論文の概要: Progression: an extrapolation principle for regression
- arxiv url: http://arxiv.org/abs/2410.23246v1
- Date: Wed, 30 Oct 2024 17:29:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:27:10.375845
- Title: Progression: an extrapolation principle for regression
- Title(参考訳): 進歩:回帰の補外原理
- Authors: Gloria Buriticá, Sebastian Engelke,
- Abstract要約: 本稿では,新しい統計外挿原理を提案する。
これは、予測器とトレーニング予測器のサンプルの境界における応答との単純な関係を仮定する。
我々の半パラメトリック法である進行法は、この外挿原理を活用し、トレーニングデータ範囲を超えた近似誤差の保証を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The problem of regression extrapolation, or out-of-distribution generalization, arises when predictions are required at test points outside the range of the training data. In such cases, the non-parametric guarantees for regression methods from both statistics and machine learning typically fail. Based on the theory of tail dependence, we propose a novel statistical extrapolation principle. After a suitable, data-adaptive marginal transformation, it assumes a simple relationship between predictors and the response at the boundary of the training predictor samples. This assumption holds for a wide range of models, including non-parametric regression functions with additive noise. Our semi-parametric method, progression, leverages this extrapolation principle and offers guarantees on the approximation error beyond the training data range. We demonstrate how this principle can be effectively integrated with existing approaches, such as random forests and additive models, to improve extrapolation performance on out-of-distribution samples.
- Abstract(参考訳): 回帰外挿(out-of-distribution generalization)の問題は、トレーニングデータの範囲外のテストポイントで予測が必要なときに発生する。
このような場合、統計学と機械学習の両方からの回帰手法の非パラメトリック保証は通常失敗する。
テール依存の理論に基づいて,新しい統計的外挿原理を提案する。
適切なデータ適応型境界変換の後、トレーニング予測器サンプルの境界における予測器と応答との単純な関係を仮定する。
この仮定は、付加雑音を持つ非パラメトリック回帰関数を含む幅広いモデルに対して成り立つ。
我々の半パラメトリック法である進行法は、この外挿原理を活用し、トレーニングデータ範囲を超えた近似誤差の保証を提供する。
本研究では,この原理をランダム森林や付加モデルといった既存手法と効果的に統合して,分布外サンプルの補間性能を向上させる方法を示す。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Adaptive Optimization for Prediction with Missing Data [6.800113478497425]
適応線形回帰モデルの中には,命令規則と下流線形回帰モデルを同時に学習するのと等価なものもある。
ランダムにデータの欠落が強くない環境では,本手法はサンプル外精度を2~10%向上させる。
論文 参考訳(メタデータ) (2024-02-02T16:35:51Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
回帰シナリオの予測セットは、応答変数が$Y$で、多様体に存在し、Xで表される共変数がユークリッド空間にあるときに検討する。
我々は、多様体上のこれらの領域の経験的バージョンが、その集団に対するほぼ確実に収束していることを証明する。
論文 参考訳(メタデータ) (2023-10-12T10:56:25Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
我々は、エングレースと呼ばれるニューラルネットワークに基づく分布回帰手法を提案する。
エングレスモデル(engression model)は、適合した条件分布からサンプリングできるという意味で生成され、高次元結果にも適している。
一方、最小二乗法や量子回帰法のような従来の回帰手法は、同じ仮定の下では不十分である。
論文 参考訳(メタデータ) (2023-07-03T08:19:00Z) - Refining Amortized Posterior Approximations using Gradient-Based Summary
Statistics [0.9176056742068814]
逆問題の文脈における後部分布の補正近似を改善するための反復的枠組みを提案する。
そこで我々は,本手法をスタイリング問題に適用して制御条件で検証し,改良された後部近似を各繰り返しで観察する。
論文 参考訳(メタデータ) (2023-05-15T15:47:19Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Statistical Inference for High-Dimensional Linear Regression with
Blockwise Missing Data [13.48481978963297]
ブロックワイドなデータは、異なるソースまたはモダリティが相補的な情報を含むマルチソースまたはマルチモダリティデータを統合するときに発生する。
本稿では,未偏差推定方程式に基づいて回帰係数ベクトルを計算効率良く推定する手法を提案する。
アルツハイマー病神経画像イニシアチブの数値的研究と応用分析により、提案手法は既存の方法よりも教師なしのサンプルからより優れた性能と利益を得られることを示した。
論文 参考訳(メタデータ) (2021-06-07T05:12:42Z) - Statistical Inference after Kernel Ridge Regression Imputation under
item nonresponse [0.76146285961466]
カーネルリッジ回帰法による非パラメトリックな計算手法を考察し、一貫した分散推定を提案する。
提案した分散推定器はエントロピー法を用いて密度比を推定する線形化手法に基づいている。
論文 参考訳(メタデータ) (2021-01-29T20:46:33Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。