論文の概要: Rethinking Video Tokenization: A Conditioned Diffusion-based Approach
- arxiv url: http://arxiv.org/abs/2503.03708v2
- Date: Sat, 08 Mar 2025 14:48:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 13:36:29.430165
- Title: Rethinking Video Tokenization: A Conditioned Diffusion-based Approach
- Title(参考訳): ビデオトークン化の再考:条件付き拡散に基づくアプローチ
- Authors: Nianzu Yang, Pandeng Li, Liming Zhao, Yang Li, Chen-Wei Xie, Yehui Tang, Xudong Lu, Zhihang Liu, Yun Zheng, Yu Liu, Junchi Yan,
- Abstract要約: Diffusion Conditioned-based Gene Tokenizerは、GANベースのデコーダを条件付き拡散モデルで置き換える。
再建に基本的MSE拡散損失とKL項,LPIPSを併用した訓練を行った。
CDTのスケールダウンバージョン(3$times$推論スピードアップ)でさえ、トップベースラインと互換性がある。
- 参考スコア(独自算出の注目度): 58.164354605550194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing video tokenizers typically use the traditional Variational Autoencoder (VAE) architecture for video compression and reconstruction. However, to achieve good performance, its training process often relies on complex multi-stage training tricks that go beyond basic reconstruction loss and KL regularization. Among these tricks, the most challenging is the precise tuning of adversarial training with additional Generative Adversarial Networks (GANs) in the final stage, which can hinder stable convergence. In contrast to GANs, diffusion models offer more stable training processes and can generate higher-quality results. Inspired by these advantages, we propose CDT, a novel Conditioned Diffusion-based video Tokenizer, that replaces the GAN-based decoder with a conditional causal diffusion model. The encoder compresses spatio-temporal information into compact latents, while the decoder reconstructs videos through a reverse diffusion process conditioned on these latents. During inference, we incorporate a feature cache mechanism to generate videos of arbitrary length while maintaining temporal continuity and adopt sampling acceleration technique to enhance efficiency. Trained using only a basic MSE diffusion loss for reconstruction, along with KL term and LPIPS perceptual loss from scratch, extensive experiments demonstrate that CDT achieves state-of-the-art performance in video reconstruction tasks with just a single-step sampling. Even a scaled-down version of CDT (3$\times$ inference speedup) still performs comparably with top baselines. Moreover, the latent video generation model trained with CDT also exhibits superior performance. The source code and pretrained weights will be released shortly, so please stay tuned for updates!
- Abstract(参考訳): 既存のビデオトークンライザは、ビデオ圧縮と再構成に従来の変分オートエンコーダ(VAE)アーキテクチャを使用するのが一般的である。
しかし、優れた性能を達成するために、そのトレーニングプロセスは、基本的な再構築損失とKL正規化を超えた複雑な多段階トレーニングトリックに依存していることが多い。
これらのトリックの中で最も難しいのは、最終段階にGAN(Generative Adversarial Networks)を追加して敵のトレーニングを正確に調整することであり、安定した収束を妨げる。
GANとは対照的に、拡散モデルはより安定したトレーニングプロセスを提供し、高品質な結果を生み出すことができる。
これらの利点に触発されて、我々は、GANベースのデコーダを条件付き因果拡散モデルに置き換える、新しい条件付き拡散型ビデオトケナイザCDTを提案する。
エンコーダは時空間情報をコンパクトな潜伏子に圧縮し、デコーダはこれらの潜伏子に条件付けられた逆拡散過程を通じて映像を再構成する。
推論中に、時間的連続性を保ちながら任意の長さのビデオを生成する機能キャッシュ機構を導入し、サンプリングアクセラレーション技術を用いて効率を向上させる。
簡単なMSE拡散損失とKL項とLPIPSのスクラッチからの知覚損失を併用した訓練により、CDTは1ステップのサンプリングだけで、ビデオ再構成タスクにおける最先端のパフォーマンスを達成できることを示した。
CDTのスケールダウンバージョン(3$\times$推論スピードアップ)でさえ、トップベースラインと互換性がある。
さらに、CDTでトレーニングされた潜時ビデオ生成モデルは、優れた性能を示す。
ソースコードと事前訓練済みの重み付けがまもなくリリースされるので、アップデートの調整をお願いします。
関連論文リスト
- REGEN: Learning Compact Video Embedding with (Re-)Generative Decoder [52.698595889988766]
生成モデルのためのビデオ埋め込み学習について,新しい視点を提示する。
入力ビデオの正確な再生を必要とせず、効果的な埋め込みは視覚的に妥当な再構築に焦点を当てるべきである。
本稿では,従来のエンコーダ・デコーダ・ビデオ埋め込みをエンコーダ・ジェネレータ・フレームワークに置き換えることを提案する。
論文 参考訳(メタデータ) (2025-03-11T17:51:07Z) - TIDE : Temporal-Aware Sparse Autoencoders for Interpretable Diffusion Transformers in Image Generation [34.73820805875123]
TIDE (Temporal-aware Sparse Autoencoders for Interpretable Diffusion transformErs) は,DiTアクティベーション層内の時間的再構築を段階的に促進する新しいフレームワークである。
TIDEはスパースオートエンコーダ(SAE)とスパースボトルネック層を使用して、解釈可能かつ階層的な特徴を抽出する。
提案手法は,1e-3の平均2乗誤差(MSE)とコサイン類似度(0.97。
論文 参考訳(メタデータ) (2025-03-10T08:35:51Z) - Divot: Diffusion Powers Video Tokenizer for Comprehension and Generation [54.21476271127356]
Divotは拡散駆動型ビデオトケナイザである。
我々は、ビデオからテキストへの自己回帰とテキストからビデオへの生成を通じてDivot-unaVicを提示する。
論文 参考訳(メタデータ) (2024-12-05T18:53:04Z) - High-Efficiency Neural Video Compression via Hierarchical Predictive Learning [27.41398149573729]
強化されたDeep Hierarchical Video Compression(DHVC 2.0)は、優れた圧縮性能と目覚ましい複雑さの効率を導入する。
階層的な予測符号化を使用して、各ビデオフレームをマルチスケール表現に変換する。
トランスミッションフレンドリーなプログレッシブデコーディングをサポートしており、パケットロスの存在下では特にネットワーク化されたビデオアプリケーションに有利である。
論文 参考訳(メタデータ) (2024-10-03T15:40:58Z) - Sample what you cant compress [6.24979299238534]
拡散に基づく損失の下で、連続エンコーダとデコーダの学習方法を示す。
このアプローチは、GANベースのオートエンコーダと比較して、再構築品質が向上する。
また, 得られた表現は, 最先端のGANに基づく損失から得られた表現と比較して, 潜時拡散モデルによりモデル化し易いことを示す。
論文 参考訳(メタデータ) (2024-09-04T08:42:42Z) - Uncertainty-Aware Deep Video Compression with Ensembles [24.245365441718654]
深層アンサンブルによる予測不確かさを効果的に把握できる不確実性対応ビデオ圧縮モデルを提案する。
我々のモデルは1080pのシーケンスに比べて20%以上効率良くビットを節約できる。
論文 参考訳(メタデータ) (2024-03-28T05:44:48Z) - Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Inlicit Neural representations (INRs) は、ビデオストレージと処理において有望なアプローチとして登場した。
本稿では,現在の暗黙的ビデオ表現手法のための普遍的なブースティングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-28T08:32:19Z) - Faster Diffusion: Rethinking the Role of the Encoder for Diffusion Model Inference [95.42299246592756]
本稿では,UNetエンコーダについて検討し,エンコーダの特徴を実証的に分析する。
エンコーダの特徴は最小限に変化するが,デコーダの特徴は時間段階によって大きく異なる。
我々は、テキスト・ツー・ビデオ、パーソナライズド・ジェネレーション、参照誘導ジェネレーションといった他のタスクに対するアプローチを検証する。
論文 参考訳(メタデータ) (2023-12-15T08:46:43Z) - Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World
Video Super-Resolution [65.91317390645163]
Upscale-A-Videoは、ビデオアップスケーリングのためのテキストガイド付き遅延拡散フレームワークである。
ローカルでは、一時的なレイヤをU-NetとVAE-Decoderに統合し、短いシーケンス内で一貫性を維持する。
また、テキストプロンプトによってテクスチャ生成と調整可能なノイズレベルをガイドし、復元と生成のバランスを取ることで、柔軟性も向上する。
論文 参考訳(メタデータ) (2023-12-11T18:54:52Z) - Reuse and Diffuse: Iterative Denoising for Text-to-Video Generation [92.55296042611886]
リユースとディフューズ”と呼ばれるフレームワークを$textitVidRD$と名づけて提案する。
また、既存の複数のデータセットからの多様なコンテンツを含むビデオテキストデータを構成するための一連の戦略を提案する。
論文 参考訳(メタデータ) (2023-09-07T08:12:58Z) - VideoGen: A Reference-Guided Latent Diffusion Approach for High
Definition Text-to-Video Generation [73.54366331493007]
VideoGenはテキスト・ツー・ビデオ生成方式であり、フレームの忠実度が高く、時間的一貫性の強い高精細なビデオを生成することができる。
我々は,テキストプロンプトから高品質な画像を生成するために,既製のテキスト画像生成モデル,例えば,安定拡散(Stable Diffusion)を利用する。
論文 参考訳(メタデータ) (2023-09-01T11:14:43Z) - Transform-Equivariant Consistency Learning for Temporal Sentence
Grounding [66.10949751429781]
ビデオ毎により差別的な表現を学習するために,新しい同変一貫性規則学習フレームワークを導入する。
私たちのモチベーションは、クエリ誘導アクティビティの時間的境界を一貫して予測することにある。
特に,ビデオの完全性と滑らか性を高めるために,自己教師付き一貫性損失モジュールを考案した。
論文 参考訳(メタデータ) (2023-05-06T19:29:28Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
本稿では,拡散生成モデルを用いた画像圧縮のエンドツーエンド最適化について概説する。
VAEベースのニューラル圧縮とは対照的に、(平均)デコーダは決定論的ニューラルネットワークであり、私たちのデコーダは条件付き拡散モデルである。
提案手法では,GANモデルよりもFIDスコアが強く,VAEモデルとの競合性能も高い。
論文 参考訳(メタデータ) (2022-09-14T21:53:27Z) - A Coding Framework and Benchmark towards Low-Bitrate Video Understanding [63.05385140193666]
我々は,従来のコーデックとニューラルネットワーク(NN)の両方を活用する,従来型ニューラル混合符号化フレームワークを提案する。
このフレームワークは、動画の移動効率の良いセマンティック表現を確実に保持することで最適化される。
8つのデータセットに3つのダウンストリームタスクを備えた低ビットレートビデオ理解ベンチマークを構築し、このアプローチの顕著な優位性を実証した。
論文 参考訳(メタデータ) (2022-02-06T16:29:15Z) - Investigating Tradeoffs in Real-World Video Super-Resolution [90.81396836308085]
実世界のビデオ超解像(VSR)モデルは、一般化性を改善するために様々な劣化で訓練されることが多い。
最初のトレードオフを軽減するために,性能を犠牲にすることなく,最大40%のトレーニング時間を削減できる劣化手法を提案する。
そこで本研究では,多種多様な実世界の低品質映像系列を含むビデオLQデータセットを提案する。
論文 参考訳(メタデータ) (2021-11-24T18:58:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。