論文の概要: Active 6D Pose Estimation for Textureless Objects using Multi-View RGB Frames
- arxiv url: http://arxiv.org/abs/2503.03726v1
- Date: Wed, 05 Mar 2025 18:28:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:51:13.101228
- Title: Active 6D Pose Estimation for Textureless Objects using Multi-View RGB Frames
- Title(参考訳): マルチビューRGBフレームを用いたテクスチャレス物体のアクティブ6次元位置推定
- Authors: Jun Yang, Wenjie Xue, Sahar Ghavidel, Steven L. Waslander,
- Abstract要約: RBG画像からテクスチャレス物体の6次元ポーズを推定することはロボティクスにおいて重要な問題である。
RGB画像のみを用いてテクスチャレス物体の6次元ポーズを推定するための包括的能動的知覚フレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.859307261818362
- License:
- Abstract: Estimating the 6D pose of textureless objects from RBG images is an important problem in robotics. Due to appearance ambiguities, rotational symmetries, and severe occlusions, single-view based 6D pose estimators are still unable to handle a wide range of objects, motivating research towards multi-view pose estimation and next-best-view prediction that addresses these limitations. In this work, we propose a comprehensive active perception framework for estimating the 6D poses of textureless objects using only RGB images. Our approach is built upon a key idea: decoupling the 6D pose estimation into a sequential two-step process can greatly improve both accuracy and efficiency. First, we estimate the 3D translation of each object, resolving scale and depth ambiguities inherent to RGB images. These estimates are then used to simplify the subsequent task of determining the 3D orientation, which we achieve through canonical scale template matching. Building on this formulation, we then introduce an active perception strategy that predicts the next best camera viewpoint to capture an RGB image, effectively reducing object pose uncertainty and enhancing pose accuracy. We evaluate our method on the public ROBI dataset as well as on a transparent object dataset that we created. When evaluated using the same camera viewpoints, our multi-view pose estimation significantly outperforms state-of-the-art approaches. Furthermore, by leveraging our next-best-view strategy, our method achieves high object pose accuracy with substantially fewer viewpoints than heuristic-based policies.
- Abstract(参考訳): RBG画像からテクスチャレス物体の6次元ポーズを推定することはロボティクスにおいて重要な問題である。
外観の曖昧さ、回転対称性、厳密なオクルージョンのため、シングルビューベースの6次元ポーズ推定器はまだ広範囲のオブジェクトを扱うことができず、これらの制限に対処するマルチビューポーズ推定と次ベクタービュー予測に向けた研究を動機付けている。
本研究では,RGB画像のみを用いてテクスチャレス物体の6次元ポーズを推定するための包括的能動的知覚フレームワークを提案する。
提案手法は,6次元ポーズ推定を逐次2段階のプロセスに分離することで,精度と効率を大幅に向上させることができる。
まず、RGB画像固有のスケールと深さの曖昧さを解消し、各オブジェクトの3次元翻訳を推定する。
これらの推定は、標準スケールのテンプレートマッチングによって達成される3次元の向きを決定するタスクを単純化するために用いられる。
この定式化に基づいて,RGB画像の撮影に最適なカメラ視点を予測し,オブジェクトのポーズの不確実性を効果的に低減し,ポーズの精度を高める能動的認識戦略を導入する。
我々は、公開ROBIデータセットと、作成した透明なオブジェクトデータセットに基づいて、我々の手法を評価した。
同じカメラ視点で評価すると、我々の多視点ポーズ推定は最先端のアプローチよりも大幅に優れている。
さらに,本手法は,次世代の視点戦略を活用することで,ヒューリスティックなポリシーよりもはるかに少ない視点で高いオブジェクトポーズ精度を実現する。
関連論文リスト
- RDPN6D: Residual-based Dense Point-wise Network for 6Dof Object Pose Estimation Based on RGB-D Images [13.051302134031808]
単一のRGB-D画像を用いてオブジェクトの6DoFポーズを計算する新しい手法を提案する。
オブジェクトのポーズを直接予測する既存の手法や、ポーズ回復のためのスパースキーポイントに依存する既存の手法とは異なり、我々のアプローチは密度の高い対応を使ってこの課題に対処する。
論文 参考訳(メタデータ) (2024-05-14T10:10:45Z) - Advancing 6D Pose Estimation in Augmented Reality -- Overcoming Projection Ambiguity with Uncontrolled Imagery [0.0]
本研究では,拡張現実(AR)における正確な6次元ポーズ推定の課題に対処する。
本稿では,z軸変換と焦点長の推定を戦略的に分解する手法を提案する。
この手法は6次元ポーズ推定プロセスの合理化だけでなく、AR設定における3次元オブジェクトのオーバーレイの精度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-03-20T09:22:22Z) - Rigidity-Aware Detection for 6D Object Pose Estimation [60.88857851869196]
最近の6Dオブジェクトのポーズ推定方法は、最初にオブジェクト検出を使用して2Dバウンディングボックスを取得し、実際にポーズを回帰する。
本研究では,6次元ポーズ推定において対象物体が剛性であるという事実を利用した剛性認識検出手法を提案する。
このアプローチの成功の鍵となるのは可視性マップであり、これは境界ボックス内の各ピクセルとボックス境界の間の最小障壁距離を用いて構築することを提案する。
論文 参考訳(メタデータ) (2023-03-22T09:02:54Z) - 3D Neural Embedding Likelihood: Probabilistic Inverse Graphics for
Robust 6D Pose Estimation [50.15926681475939]
逆グラフィックスは2次元画像から3次元シーン構造を推論することを目的としている。
確率モデルを導入し,不確実性を定量化し,6次元ポーズ推定タスクにおけるロバスト性を実現する。
3DNELは、RGBから学んだニューラルネットワークの埋め込みと深度情報を組み合わせることで、RGB-D画像からのsim-to-real 6Dオブジェクトのポーズ推定の堅牢性を向上させる。
論文 参考訳(メタデータ) (2023-02-07T20:48:35Z) - MV6D: Multi-View 6D Pose Estimation on RGB-D Frames Using a Deep
Point-wise Voting Network [14.754297065772676]
MV6Dと呼ばれる新しい多視点6Dポーズ推定手法を提案する。
我々は、ターゲットオブジェクトのキーポイントを予測するために単一のRGB-D画像を使用するPVN3Dネットワークをベースとしています。
CosyPoseのような現在の多視点ポーズ検出ネットワークとは対照的に、MV6Dはエンドツーエンドで複数の視点の融合を学習することができる。
論文 参考訳(メタデータ) (2022-08-01T23:34:43Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
既知の3DオブジェクトのセットとRGBまたはRGB-Dの入力画像から、各オブジェクトの6Dポーズを検出して推定する。
我々のアプローチは、ポーズと対応を緊密に結合した方法で反復的に洗練し、アウトレーヤを動的に除去して精度を向上させる。
論文 参考訳(メタデータ) (2022-04-26T18:00:08Z) - FS6D: Few-Shot 6D Pose Estimation of Novel Objects [116.34922994123973]
6Dオブジェクトポーズ推定ネットワークは、多数のオブジェクトインスタンスにスケールする能力に制限がある。
本研究では,未知の物体の6次元ポーズを,余分な訓練を伴わずにいくつかの支援ビューで推定する。
論文 参考訳(メタデータ) (2022-03-28T10:31:29Z) - Pose Estimation of Specific Rigid Objects [0.7931904787652707]
本稿では,RGBまたはRGB-D入力画像から剛体物体の6次元ポーズを推定する問題に対処する。
この問題は、ロボット操作、拡張現実、自律運転など、多くの応用分野において非常に重要である。
論文 参考訳(メタデータ) (2021-12-30T14:36:47Z) - SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [98.83762558394345]
SO-Poseは、オブジェクトの6自由度(6DoF)をすべて、単一のRGBイメージから散らばった環境でポーズさせるフレームワークである。
本稿では,3次元オブジェクトの2層表現を確立するために,自己閉塞に関する新たな推論を導入する。
対応性,自己閉塞性,6次元ポーズを整列する層間合成により,精度とロバスト性をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-08-18T19:49:29Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
本稿では,RGB画像を用いた6次元ポーズ推定の改良手法を提案する。
私たちの主な洞察力は、最初のポーズ推定の後、オブジェクトの異なる空間的特徴に注意を払うことが重要です。
実験により,このアプローチが空間的特徴に順応することを学び,被写体の一部を無視することを学び,データセット間でのポーズ推定を改善することを実証した。
論文 参考訳(メタデータ) (2021-01-05T17:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。