Graph-Augmented LSTM for Forecasting Sparse Anomalies in Graph-Structured Time Series
- URL: http://arxiv.org/abs/2503.03729v1
- Date: Wed, 05 Mar 2025 18:37:52 GMT
- Title: Graph-Augmented LSTM for Forecasting Sparse Anomalies in Graph-Structured Time Series
- Authors: Sneh Pillai,
- Abstract summary: We propose a graph-augmented time series forecasting approach that explicitly integrates the graph of relationships among time series into an LSTM forecasting model.<n>We evaluate the approach on two benchmark datasets - the Yahoo Webscope S5 anomaly dataset and the METR-LA traffic sensor network.<n>Results demonstrate that the graph-augmented model achieves significantly higher precision and recall, improving F1-score by up to 10% over the best baseline.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting anomalies in time series data is a critical task across many domains. The challenge intensifies when anomalies are sparse and the data are multivariate with relational dependencies across sensors or nodes. Traditional univariate anomaly detectors struggle to capture such cross-node dependencies, particularly in sparse anomaly settings. To address this, we propose a graph-augmented time series forecasting approach that explicitly integrates the graph of relationships among time series into an LSTM forecasting model. This enables the model to detect rare anomalies that might otherwise go unnoticed in purely univariate approaches. We evaluate the approach on two benchmark datasets - the Yahoo Webscope S5 anomaly dataset and the METR-LA traffic sensor network - and compare the performance of the Graph-Augmented LSTM against LSTM-only, ARIMA, and Prophet baselines. Results demonstrate that the graph-augmented model achieves significantly higher precision and recall, improving F1-score by up to 10% over the best baseline
Related papers
- WaveGNN: Modeling Irregular Multivariate Time Series for Accurate Predictions [3.489870763747715]
Real-world time series often exhibit irregularities such as misaligned timestamps, missing entries, and variable sampling rates.<n>Existing approaches often rely on imputation, which can introduce biases.<n>We present WaveGNN, a novel framework designed to embed irregularly sampled time series data for accurate predictions.
arXiv Detail & Related papers (2024-12-14T00:03:44Z) - Hypergraph-based multi-scale spatio-temporal graph convolution network for Time-Series anomaly detection [8.878898677348086]
Multi-dimensional time series anomaly detection technology plays an important role in many fields including aerospace, water treatment, cloud service providers, etc.
It is becoming increasingly challenging to perform effective and accurate anomaly detection in high-dimensional and complex data sets.
We propose a hypergraph basedtemporal graph convolutional network model STGCN_Hyper, which explicitly captures high-order, multi-hop correlations between multiple variables.
Our model can flexibly learn the multi-scale time series features in the data and the dependencies between features, and outperforms most existing baseline models in terms of precision, recall, F1-score on anomaly detection
arXiv Detail & Related papers (2024-10-29T17:19:18Z) - Interdependency Matters: Graph Alignment for Multivariate Time Series Anomaly Detection [30.101707763778013]
We introduce MADGA (MTS Anomaly Detection via Graph Alignment), which redefines anomaly detection as a graph alignment (GA) problem.
Uniquely, our GA approach involves explicit alignment of both nodes and edges, employing Wasserstein distance for nodes and Gromov-Wasserstein distance for edges.
Experiments on diverse real-world datasets validate the effectiveness of MADGA, demonstrating its capability to detect anomalies and differentiate interdependencies.
arXiv Detail & Related papers (2024-10-11T14:54:08Z) - Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention.
Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies.
This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN.
arXiv Detail & Related papers (2024-08-23T14:06:30Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.<n> equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.<n>Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
arXiv Detail & Related papers (2023-08-01T09:31:44Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Multivariate Time Series Anomaly Detection via Dynamic Graph Forecasting [0.0]
We propose DyGraphAD, a time series anomaly detection framework based upon a list of dynamic inter-series graphs.
The core idea is to detect anomalies based on the deviation of inter-series relationships and intra-series temporal patterns from normal to anomalous states.
Our numerical experiments on real-world datasets demonstrate that DyGraphAD has superior performance than baseline anomaly detection approaches.
arXiv Detail & Related papers (2023-02-04T01:27:01Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale Contrastive Learning Approach [26.973056364587766]
Anomaly detection from graph data is an important data mining task in many applications such as social networks, finance, and e-commerce.
We propose a novel framework, graph ANomaly dEtection framework with Multi-scale cONtrastive lEarning (ANEMONE in short)
By using a graph neural network as a backbone to encode the information from multiple graph scales (views), we learn better representation for nodes in a graph.
arXiv Detail & Related papers (2022-02-11T09:45:11Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.