論文の概要: Generative Diffusion Model-based Compression of MIMO CSI
- arxiv url: http://arxiv.org/abs/2503.03753v1
- Date: Fri, 07 Feb 2025 02:24:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-09 05:14:35.754181
- Title: Generative Diffusion Model-based Compression of MIMO CSI
- Title(参考訳): MIMO CSIの生成拡散モデルによる圧縮
- Authors: Heasung Kim, Taekyun Lee, Hyeji Kim, Gustavo De Veciana, Mohamed Amine Arfaoui, Asil Koc, Phil Pietraski, Guodong Zhang, John Kaewell,
- Abstract要約: 実験の結果,提案手法は既存のCSI圧縮アルゴリズムよりも優れていた。
これらの知見は,通信システムにおける実用的展開のための拡散圧縮の可能性を明らかにするものである。
- 参考スコア(独自算出の注目度): 17.15101539701981
- License:
- Abstract: While neural lossy compression techniques have markedly advanced the efficiency of Channel State Information (CSI) compression and reconstruction for feedback in MIMO communications, efficient algorithms for more challenging and practical tasks-such as CSI compression for future channel prediction and reconstruction with relevant side information-remain underexplored, often resulting in suboptimal performance when existing methods are extended to these scenarios. To that end, we propose a novel framework for compression with side information, featuring an encoding process with fixed-rate compression using a trainable codebook for codeword quantization, and a decoding procedure modeled as a backward diffusion process conditioned on both the codeword and the side information. Experimental results show that our method significantly outperforms existing CSI compression algorithms, often yielding over twofold performance improvement by achieving comparable distortion at less than half the data rate of competing methods in certain scenarios. These findings underscore the potential of diffusion-based compression for practical deployment in communication systems.
- Abstract(参考訳): ニューラルロスィ圧縮技術は、MIMO通信におけるフィードバックのためのチャネル状態情報(CSI)圧縮と再構成の効率を著しく向上させてきたが、将来のチャネル予測のためのCSI圧縮や、関連するサイド情報による再構成のようなより困難で実用的なタスクのための効率的なアルゴリズムは、しばしばこれらのシナリオに既存の手法が拡張されたときの最適性能をもたらす。
そこで我々は,コードワード量子化のためのトレーニング可能なコードブックを用いた固定レート圧縮による符号化処理と,コードワードと側情報の両方に条件付き後方拡散プロセスとしてモデル化された復号処理を特徴とする,サイド情報による圧縮のための新しいフレームワークを提案する。
実験結果から,提案手法は既存のCSI圧縮アルゴリズムよりも大幅に優れており,特定のシナリオにおける競合する手法のデータレートの半分以下で同等の歪みを達成し,2倍の性能向上が期待できることがわかった。
これらの知見は,通信システムにおける実用的展開のための拡散圧縮の可能性を明らかにするものである。
関連論文リスト
- CALLIC: Content Adaptive Learning for Lossless Image Compression [64.47244912937204]
CALLICは、学習したロスレス画像圧縮のための新しい最先端(SOTA)を設定する。
本稿では,畳み込みゲーティング操作を利用したコンテンツ認識型自己回帰自己保持機構を提案する。
エンコーディング中、低ランク行列を用いて深度の畳み込みを含む事前学習層を分解し、レート誘導プログレッシブファインタニング(RPFT)による画像検査にインクリメンタルウェイトを適応させる。
推定エントロピーにより下位順にソートされたパッチを徐々に増加させたRPFTファインチューン,学習過程の最適化,適応時間の短縮を実現した。
論文 参考訳(メタデータ) (2024-12-23T10:41:18Z) - UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Inlicit Neural Representation (INR) ネットワークは、その柔軟な圧縮比のため、顕著な汎用性を示している。
周波数領域情報を含むコードブックをINRネットワークへの事前入力として導入する。
これにより、INRの表現力が向上し、異なる画像ブロックに対して特異な条件付けが提供される。
論文 参考訳(メタデータ) (2024-05-27T05:52:13Z) - Channel-wise Feature Decorrelation for Enhanced Learned Image Compression [16.638869231028437]
新たなLearnered Compression(LC)は、従来のモジュールをDeep Neural Networks(DNN)に置き換えるものだ。
本稿では,既存のDNN容量をフル活用して圧縮を改善することを提案する。
3つの戦略が提案され,(1)変換ネットワーク,(2)コンテキストモデル,(3)両ネットワークを最適化する。
論文 参考訳(メタデータ) (2024-03-16T14:30:25Z) - Unifying Generation and Compression: Ultra-low bitrate Image Coding Via
Multi-stage Transformer [35.500720262253054]
本稿では,新しい画像生成圧縮(UIGC)パラダイムを導入し,生成と圧縮のプロセスを統合する。
UIGCフレームワークの重要な特徴は、トークン化にベクトル量子化(VQ)イメージモデルを採用することである。
実験では、既存のコーデックよりも知覚品質と人間の知覚において、提案されたUIGCフレームワークが優れていることを示した。
論文 参考訳(メタデータ) (2024-03-06T14:27:02Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
本稿では,エンコーダとデコーダの両端に内在するニューラル表現を強化することで,符号化性能の向上を図るシステムを提案する。
実験により,提案手法はJPEGに対する速度歪み性能を,様々な品質指標で改善することを示した。
論文 参考訳(メタデータ) (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Efficient Data Compression for 3D Sparse TPC via Bicephalous
Convolutional Autoencoder [8.759778406741276]
この研究は、textitBicephalous Convolutional AutoEncoder (BCAE)と呼ばれる、空間と回帰を同時に解決するデュアルヘッドオートエンコーダを導入している。
これはMGARD、SZ、ZFPといった従来のデータ圧縮手法と比較して圧縮忠実度と比の両方の利点を示している。
論文 参考訳(メタデータ) (2021-11-09T21:26:37Z) - Feedback Recurrent Autoencoder for Video Compression [14.072596106425072]
低レイテンシモードで動作する学習ビデオ圧縮のための新しいネットワークアーキテクチャを提案する。
提案手法は,高分解能UVGデータセット上でのMS-SSIM/レート性能を示す。
論文 参考訳(メタデータ) (2020-04-09T02:58:07Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
本稿では,効率的なネットワーク圧縮のための新しい構造空間分割法を提案する。
提案手法は, 畳み込み重みに対する構造的疎度を自動的に誘導する。
また,学習可能なチャネルシャッフル機構によるグループ間通信の問題にも対処する。
論文 参考訳(メタデータ) (2020-02-19T12:03:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。