Tackling Few-Shot Segmentation in Remote Sensing via Inpainting Diffusion Model
- URL: http://arxiv.org/abs/2503.03785v1
- Date: Wed, 05 Mar 2025 02:08:51 GMT
- Title: Tackling Few-Shot Segmentation in Remote Sensing via Inpainting Diffusion Model
- Authors: Steve Andreas Immanuel, Woojin Cho, Junhyuk Heo, Darongsae Kwon,
- Abstract summary: In the few-shot segmentation task, models are typically trained on base classes with abundant annotations and later adapted to novel classes with limited examples.<n>We propose a simple approach that leverages diffusion models to generate diverse variations of novel-class objects.<n>By framing the problem as an image inpainting task, we synthesize plausible instances of novel classes under various environments.
- Score: 0.3749861135832073
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Limited data is a common problem in remote sensing due to the high cost of obtaining annotated samples. In the few-shot segmentation task, models are typically trained on base classes with abundant annotations and later adapted to novel classes with limited examples. However, this often necessitates specialized model architectures or complex training strategies. Instead, we propose a simple approach that leverages diffusion models to generate diverse variations of novel-class objects within a given scene, conditioned by the limited examples of the novel classes. By framing the problem as an image inpainting task, we synthesize plausible instances of novel classes under various environments, effectively increasing the number of samples for the novel classes and mitigating overfitting. The generated samples are then assessed using a cosine similarity metric to ensure semantic consistency with the novel classes. Additionally, we employ Segment Anything Model (SAM) to segment the generated samples and obtain precise annotations. By using high-quality synthetic data, we can directly fine-tune off-the-shelf segmentation models. Experimental results demonstrate that our method significantly enhances segmentation performance in low-data regimes, highlighting its potential for real-world remote sensing applications.
Related papers
- Generalized Semantic Contrastive Learning via Embedding Side Information for Few-Shot Object Detection [52.490375806093745]
The objective of few-shot object detection (FSOD) is to detect novel objects with few training samples.
We introduce the side information to alleviate the negative influences derived from the feature space and sample viewpoints.
Our model outperforms the previous state-of-the-art methods, significantly improving the ability of FSOD in most shots/splits.
arXiv Detail & Related papers (2025-04-09T17:24:05Z) - Leveraging Text-to-Image Generation for Handling Spurious Correlation [24.940576844328408]
Deep neural networks trained with Empirical Risk Minimization (ERM) perform well when both training and test data come from the same domain.
ERM models may rely on spurious correlations that often exist between labels and irrelevant features of images, making predictions unreliable when those features do not exist.
We propose a technique to generate training samples with text-to-image (T2I) diffusion models for addressing the spurious correlation problem.
arXiv Detail & Related papers (2025-03-21T15:28:22Z) - Integrated Image-Text Based on Semi-supervised Learning for Small Sample Instance Segmentation [1.3157419797035321]
The article proposes a novel small sample instance segmentation solution from the perspective of maximizing the utilization of existing information.
First, it helps the model fully utilize unlabeled data by learning to generate pseudo labels, increasing the number of available samples.
Second, by integrating the features of text and image, more accurate classification results can be obtained.
arXiv Detail & Related papers (2024-10-21T14:44:08Z) - Liberating Seen Classes: Boosting Few-Shot and Zero-Shot Text Classification via Anchor Generation and Classification Reframing [38.84431954053434]
Few-shot and zero-shot text classification aim to recognize samples from novel classes with limited labeled samples or no labeled samples at all.
We propose a simple and effective strategy for few-shot and zero-shot text classification.
arXiv Detail & Related papers (2024-05-06T15:38:32Z) - Dual-View Data Hallucination with Semantic Relation Guidance for Few-Shot Image Recognition [49.26065739704278]
We propose a framework that exploits semantic relations to guide dual-view data hallucination for few-shot image recognition.
An instance-view data hallucination module hallucinates each sample of a novel class to generate new data.
A prototype-view data hallucination module exploits semantic-aware measure to estimate the prototype of a novel class.
arXiv Detail & Related papers (2024-01-13T12:32:29Z) - Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot
Text Classification Tasks [75.42002070547267]
We propose a self evolution learning (SE) based mixup approach for data augmentation in text classification.
We introduce a novel instance specific label smoothing approach, which linearly interpolates the model's output and one hot labels of the original samples to generate new soft for label mixing up.
arXiv Detail & Related papers (2023-05-22T23:43:23Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
Several incremental learning methods are proposed to mitigate catastrophic forgetting for object detection.
Despite the effectiveness, these methods require co-occurrence of the unlabeled base classes in the training data of the novel classes.
We propose the use of unlabeled in-the-wild data to bridge the non-occurrence caused by the missing base classes during the training of additional novel classes.
arXiv Detail & Related papers (2021-10-28T10:57:25Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.