論文の概要: Predicting Team Performance from Communications in Simulated Search-and-Rescue
- arxiv url: http://arxiv.org/abs/2503.03791v1
- Date: Wed, 05 Mar 2025 07:20:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:59:59.723473
- Title: Predicting Team Performance from Communications in Simulated Search-and-Rescue
- Title(参考訳): 模擬検索・救助におけるコミュニケーションからのチームパフォーマンス予測
- Authors: Ali Jalal-Kamali, Nikolos Gurney, David Pynadath,
- Abstract要約: 会話データを分析して、チームの特性とチームの成果との相関を識別する。
本研究は,これらの推論により,チームリング結果の変動を説明できることを示した。
- 参考スコア(独自算出の注目度): 1.2289361708127877
- License:
- Abstract: Understanding how individual traits influence team performance is valuable, but these traits are not always directly observable. Prior research has inferred traits like trust from behavioral data. We analyze conversational data to identify team traits and their correlation with teaming outcomes. Using transcripts from a Minecraft-based search-and-rescue experiment, we apply topic modeling and clustering to uncover key interaction patterns. Our findings show that variations in teaming outcomes can be explained through these inferences, with different levels of predictive power derived from individual traits and team dynamics.
- Abstract(参考訳): 個々の特性がチームのパフォーマンスにどのように影響するかを理解することは価値があるが、これらの特性は必ずしも直接観察可能であるとは限らない。
これまでの研究では、行動データからの信頼のような特性が推測されていた。
会話データを分析して、チームの特性とチームの成果との相関を識別する。
Minecraftをベースとした検索・救助実験の書き起こしを用いて,主要なインタラクションパターンを明らかにするためにトピックモデリングとクラスタリングを適用した。
この結果から, 個人特性とチームダイナミクスから導かれる予測力のレベルが異なる, これらの推論によって, チームリング結果のバリエーションを説明できることがわかった。
関連論文リスト
- ML-SPEAK: A Theory-Guided Machine Learning Method for Studying and Predicting Conversational Turn-taking Patterns [25.049072387358244]
自己組織化チーム内で対話型ターンテイクの計算モデルを開発する。
個人の性格特性とチームのコミュニケーションパターンのギャップを埋めることで、私たちのモデルはチームプロセスの理論を伝えることができるのです。
論文 参考訳(メタデータ) (2024-11-23T01:27:01Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - Active Learning of Ordinal Embeddings: A User Study on Football Data [4.856635699699126]
人間は本来、未知の類似性関数を使用してラベル付けされていないデータセットのインスタンス間の距離を計測する。
この研究はディープ・メトリック・ラーニングを使用して、大規模なフットボールの軌跡データセットのアノテーションからユーザ定義の類似性関数を学習する。
論文 参考訳(メタデータ) (2022-07-26T07:55:23Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Predicting Relationship Labels and Individual Personality Traits from
Telecommunication History in Social Networks using Hawkes Processes [5.668126716715423]
携帯電話には豊富な個人情報が含まれているので、安全を保とうとしています。
我々は、匿名のコミュニケーショントレースから、個人の心理的プロファイルとその仲間との関係を予測できるという大規模な証拠を提供する。
論文 参考訳(メタデータ) (2020-09-04T07:24:49Z) - Self-Attention Attribution: Interpreting Information Interactions Inside
Transformer [89.21584915290319]
本稿では,トランスフォーマー内の情報相互作用を解釈する自己帰属属性法を提案する。
本研究は,BERT に対する非目標攻撃の実装において,その属性を敵対パターンとして用いることができることを示す。
論文 参考訳(メタデータ) (2020-04-23T14:58:22Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z) - Improving Multi-Turn Response Selection Models with Complementary
Last-Utterance Selection by Instance Weighting [84.9716460244444]
我々は、データリソース自体の根底にある相関を利用して、異なる種類の監視信号を導出することを検討する。
2つの公開データセットで広範な実験を行い、両方のデータセットで大幅に改善した。
論文 参考訳(メタデータ) (2020-02-18T06:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。