Multi-Agent Systems Powered by Large Language Models: Applications in Swarm Intelligence
- URL: http://arxiv.org/abs/2503.03800v1
- Date: Wed, 05 Mar 2025 17:13:27 GMT
- Title: Multi-Agent Systems Powered by Large Language Models: Applications in Swarm Intelligence
- Authors: Cristian Jimenez-Romero, Alper Yegenoglu, Christian Blum,
- Abstract summary: This work examines the integration of large language models (LLMs) into multi-agent simulations by replacing the hard-coded programs of agents with LLM-driven prompts.<n>The proposed approach is showcased in the context of two examples of complex systems from the field of swarm intelligence: ant colony foraging and bird flocking.
- Score: 0.8602553195689513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work examines the integration of large language models (LLMs) into multi-agent simulations by replacing the hard-coded programs of agents with LLM-driven prompts. The proposed approach is showcased in the context of two examples of complex systems from the field of swarm intelligence: ant colony foraging and bird flocking. Central to this study is a toolchain that integrates LLMs with the NetLogo simulation platform, leveraging its Python extension to enable communication with GPT-4o via the OpenAI API. This toolchain facilitates prompt-driven behavior generation, allowing agents to respond adaptively to environmental data. For both example applications mentioned above, we employ both structured, rule-based prompts and autonomous, knowledge-driven prompts. Our work demonstrates how this toolchain enables LLMs to study self-organizing processes and induce emergent behaviors within multi-agent environments, paving the way for new approaches to exploring intelligent systems and modeling swarm intelligence inspired by natural phenomena. We provide the code, including simulation files and data at https://github.com/crjimene/swarm_gpt.
Related papers
- MooseAgent: A LLM Based Multi-agent Framework for Automating Moose Simulation [1.729730091778761]
This paper proposes an automated solution framework, MooseAgent, for the multi-physics simulation framework MOOSE.
MooseAgent combines large-scale pre-trained language models (LLMs) with a multi-agent system.
Results show that MooseAgent can automate the MOOSE simulation process to a certain extent.
arXiv Detail & Related papers (2025-04-11T15:25:50Z) - debug-gym: A Text-Based Environment for Interactive Debugging [55.11603087371956]
Large Language Models (LLMs) are increasingly relied upon for coding tasks.
We posit that LLMs can benefit from the ability to interactively explore a to gather the information relevant to their task.
We present a textual environment, namely debug-gym, for developing LLM-based agents in an interactive coding setting.
arXiv Detail & Related papers (2025-03-27T14:43:28Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.
This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.
Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - API Agents vs. GUI Agents: Divergence and Convergence [35.28490346033735]
API- and GUI-based large language models (LLMs) interact with graphical user interfaces in a human-like manner.
This paper systematically analyzes their divergence and potential convergence.
We indicate that continuing innovations in LLM-based automation are poised to blur the lines between API- and GUI-driven agents.
arXiv Detail & Related papers (2025-03-14T04:26:21Z) - Towards Anthropomorphic Conversational AI Part I: A Practical Framework [49.62013440962072]
We introduce a multi- module framework designed to replicate the key aspects of human intelligence involved in conversations.
In the second stage of our approach, these conversational data, after filtering and labeling, can serve as training and testing data for reinforcement learning.
arXiv Detail & Related papers (2025-02-28T03:18:39Z) - Reinforcement Learning for Long-Horizon Interactive LLM Agents [56.9860859585028]
Interactive digital agents (IDAs) leverage APIs of stateful digital environments to perform tasks in response to user requests.<n>We present a reinforcement learning (RL) approach that trains IDAs directly in their target environments.<n>We derive LOOP, a data- and memory-efficient variant of proximal policy optimization.
arXiv Detail & Related papers (2025-02-03T18:35:42Z) - IntellAgent: A Multi-Agent Framework for Evaluating Conversational AI Systems [2.2810745411557316]
We introduce IntellAgent, a scalable, open-source framework to evaluate conversational AI systems.<n>IntellAgent automates the creation of synthetic benchmarks by combining policy-driven graph modeling, realistic event generation, and interactive user-agent simulations.<n>Our findings demonstrate that IntellAgent serves as an effective framework for advancing conversational AI by addressing challenges in bridging research and deployment.
arXiv Detail & Related papers (2025-01-19T14:58:35Z) - Lifelong Learning of Large Language Model based Agents: A Roadmap [39.01532420650279]
Lifelong learning, also known as continual or incremental learning, is a crucial component for advancing Artificial General Intelligence (AGI)<n>This survey is the first to systematically summarize the potential techniques for incorporating lifelong learning into large language models (LLMs)<n>We highlight how these pillars collectively enable continuous adaptation, mitigate catastrophic forgetting, and improve long-term performance.
arXiv Detail & Related papers (2025-01-13T12:42:04Z) - Large Action Models: From Inception to Implementation [51.81485642442344]
Large Action Models (LAMs) are designed for action generation and execution within dynamic environments.<n>LAMs hold the potential to transform AI from passive language understanding to active task completion.<n>We present a comprehensive framework for developing LAMs, offering a systematic approach to their creation, from inception to deployment.
arXiv Detail & Related papers (2024-12-13T11:19:56Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
We introduce agent symbolic learning, a systematic framework that enables language agents to optimize themselves on their own.
Agent symbolic learning is designed to optimize the symbolic network within language agents by mimicking two fundamental algorithms in connectionist learning.
We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks.
arXiv Detail & Related papers (2024-06-26T17:59:18Z) - Octopus: Embodied Vision-Language Programmer from Environmental Feedback [58.04529328728999]
Embodied vision-language models (VLMs) have achieved substantial progress in multimodal perception and reasoning.
To bridge this gap, we introduce Octopus, an embodied vision-language programmer that uses executable code generation as a medium to connect planning and manipulation.
Octopus is designed to 1) proficiently comprehend an agent's visual and textual task objectives, 2) formulate intricate action sequences, and 3) generate executable code.
arXiv Detail & Related papers (2023-10-12T17:59:58Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.