Non-Gaussianities in Collider Metric Binning
- URL: http://arxiv.org/abs/2503.03809v1
- Date: Wed, 05 Mar 2025 19:00:00 GMT
- Title: Non-Gaussianities in Collider Metric Binning
- Authors: Andrew J. Larkoski,
- Abstract summary: Metrics for rigorously defining a distance between two events have been used to study the properties of the dataspace manifold of particle collider physics.<n>We define a robust measure of the non-Gaussianity of the bin-by-bin statistics of the distance distribution.<n>We demonstrate in simulated data of jets from quantum chromodynamics sensitivity to the parton-to-hadron transition and that the manifold of events enjoys enhanced symmetries as their energy increases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metrics for rigorously defining a distance between two events have been used to study the properties of the dataspace manifold of particle collider physics. The probability distribution of pairwise distances on this dataspace is unique with probability 1, and so this suggests a method to search for and identify new physics by the deviation of measurement from a null hypothesis prediction. To quantify the deviation statistically, we directly calculate the probability distribution of the number of event pairs that land in the bin a fixed distance apart. This distribution is not generically Gaussian and the ratio of the standard deviation to the mean entries in a bin scales inversely with the square-root of the number of events in the data ensemble. If the dataspace manifold exhibits some enhanced symmetry, the number of entries is Gaussian, and further fluctuations about the mean scale away like the inverse of the number of events. We define a robust measure of the non-Gaussianity of the bin-by-bin statistics of the distance distribution, and demonstrate in simulated data of jets from quantum chromodynamics sensitivity to the parton-to-hadron transition and that the manifold of events enjoys enhanced symmetries as their energy increases.
Related papers
- Exact mean and variance of the squared Hellinger distance for random density matrices [11.495104812547021]
The Hellinger distance between quantum states is a significant measure in quantum information theory.
We propose an approximation for the corresponding probability density function based on the gamma distribution.
arXiv Detail & Related papers (2024-09-22T18:56:49Z) - Density Ratio Estimation via Sampling along Generalized Geodesics on Statistical Manifolds [0.951494089949975]
We geometrically reinterpret existing methods for density ratio estimation based on incremental mixtures.
To achieve such a method requires Monte Carlo sampling along geodesics via transformations of the two distributions.
Our experiments demonstrate that the proposed approach outperforms the existing approaches.
arXiv Detail & Related papers (2024-06-27T00:44:46Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Discriminative Estimation of Total Variation Distance: A Fidelity Auditor for Generative Data [10.678533056953784]
We propose a discriminative approach to estimate the total variation (TV) distance between two distributions.
Our method quantitatively characterizes the relation between the Bayes risk in classifying two distributions and their TV distance.
We demonstrate that, with a specific choice of hypothesis class in classification, a fast convergence rate in estimating the TV distance can be achieved.
arXiv Detail & Related papers (2024-05-24T08:18:09Z) - Sampling and estimation on manifolds using the Langevin diffusion [45.57801520690309]
Two estimators of linear functionals of $mu_phi $ based on the discretized Markov process are considered.
Error bounds are derived for sampling and estimation using a discretization of an intrinsically defined Langevin diffusion.
arXiv Detail & Related papers (2023-12-22T18:01:11Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
This paper presents a new performance bound for estimation problems where the parameter to estimate lies in a smooth manifold.
It induces a geometry for the parameter manifold, as well as an intrinsic notion of the estimation error measure.
arXiv Detail & Related papers (2023-11-08T15:17:13Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - The Representation Jensen-Shannon Divergence [0.0]
Quantifying the difference between probability distributions is crucial in machine learning.
This work proposes the representation Jensen-Shannon divergence (RJSD), a novel measure inspired by the traditional Jensen-Shannon divergence.
Our results demonstrate RJSD's superiority in two-sample testing, distribution shift detection, and unsupervised domain adaptation.
arXiv Detail & Related papers (2023-05-25T19:44:36Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Random density matrices: Analytical results for mean fidelity and
variance of squared Bures distance [1.2225709246035374]
We derive exact results for the average fidelity and variance of the squared Bures distance between a fixed density matrix and a random density matrix.
The analytical results are corroborated using Monte Carlo simulations.
arXiv Detail & Related papers (2022-11-10T13:58:27Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Kernel distance measures for time series, random fields and other
structured data [71.61147615789537]
kdiff is a novel kernel-based measure for estimating distances between instances of structured data.
It accounts for both self and cross similarities across the instances and is defined using a lower quantile of the distance distribution.
Some theoretical results are provided for separability conditions using kdiff as a distance measure for clustering and classification problems.
arXiv Detail & Related papers (2021-09-29T22:54:17Z) - Depth-based pseudo-metrics between probability distributions [1.1470070927586016]
We propose two new pseudo-metrics between continuous probability measures based on data depth and its associated central regions.
In contrast to the Wasserstein distance, the proposed pseudo-metrics do not suffer from the curse of dimensionality.
The regions-based pseudo-metric appears to be robust w.r.t. both outliers and heavy tails.
arXiv Detail & Related papers (2021-03-23T17:33:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.