Data-Driven Probabilistic Air-Sea Flux Parameterization
- URL: http://arxiv.org/abs/2503.03990v1
- Date: Thu, 06 Mar 2025 00:40:49 GMT
- Title: Data-Driven Probabilistic Air-Sea Flux Parameterization
- Authors: Jiarong Wu, Pavel Perezhogin, David John Gagne, Brandon Reichl, Aneesh C. Subramanian, Elizabeth Thompson, Laure Zanna,
- Abstract summary: This study introduces a probabilistic framework to represent the highly variable nature of air-sea flux.<n>We use artificial neural networks and eddy-covariance measurement data to estimate the mean and variance.
- Score: 1.5126645360354214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately quantifying air-sea fluxes is important for understanding air-sea interactions and improving coupled weather and climate systems. This study introduces a probabilistic framework to represent the highly variable nature of air-sea fluxes, which is missing in deterministic bulk algorithms. Assuming Gaussian distributions conditioned on the input variables, we use artificial neural networks and eddy-covariance measurement data to estimate the mean and variance by minimizing negative log-likelihood loss. The trained neural networks provide alternative mean flux estimates to existing bulk algorithms, and quantify the uncertainty around the mean estimates. Stochastic parameterization of air-sea turbulent fluxes can be constructed by sampling from the predicted distributions. Tests in a single-column forced upper-ocean model suggest that changes in flux algorithms influence sea surface temperature and mixed layer depth seasonally. The ensemble spread in stochastic runs is most pronounced during spring restratification.
Related papers
- Low-Order Flow Reconstruction and Uncertainty Quantification in Disturbed Aerodynamics Using Sparse Pressure Measurements [0.0]
This paper presents a novel machine-learning framework for reconstructing low-order gustencounter flow field and lift coefficients from sparse, noisy surface pressure measurements.<n>Our study thoroughly investigates the time-varying response of sensors to gust-air interactions, uncovering valuable insights into optimal sensor placement.
arXiv Detail & Related papers (2025-01-06T22:02:06Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
We show how diffusion-based models can be repurposed for performing principled, identifiable Bayesian inference.
We show how such maps can be learned via standard DBM training using a novel noise schedule.
The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space.
arXiv Detail & Related papers (2024-07-11T19:58:19Z) - Efficient modeling of sub-kilometer surface wind with Gaussian processes and neural networks [0.0]
Wind represents a particularly challenging variable to model due to its high spatial and temporal variability.
This paper presents a novel approach that integrates Gaussian processes and neural networks to model surface wind gusts at sub-kilometer resolution.
arXiv Detail & Related papers (2024-05-21T09:07:47Z) - Generative Modelling of Stochastic Rotating Shallow Water Noise [44.99833362998488]
This paper develops a generic methodology for calibrating the noise in fluid dynamics partial equations where the differentiality was introduced to parametrize subgrid-scale processes.
The parameterization of sub-grid scale processes is required in the estimation of uncertainty in weather and climate predictions, to represent systematic model errors arising from subgrid-scale fluctuations.
The methodology is tested on a rotating shallow water model with the elevation variable of the model used as input data. The numerical simulations show that the noise is indeed non-Gaussian.
arXiv Detail & Related papers (2024-03-15T09:30:29Z) - Uncertainty-aware Surrogate Models for Airfoil Flow Simulations with Denoising Diffusion Probabilistic Models [26.178192913986344]
We make a first attempt to use denoising diffusion probabilistic models (DDPMs) to train an uncertainty-aware surrogate model for turbulence simulations.
Our results show DDPMs can successfully capture the whole distribution of solutions and, as a consequence, accurately estimate the uncertainty of the simulations.
We also evaluate an emerging generative modeling variant, flow matching, in comparison to regular diffusion models.
arXiv Detail & Related papers (2023-12-08T19:04:17Z) - Uncertainty quantification and out-of-distribution detection using
surjective normalizing flows [46.51077762143714]
We propose a simple approach using surjective normalizing flows to identify out-of-distribution data sets in deep neural network models.
We show that our method can reliably discern out-of-distribution data from in-distribution data.
arXiv Detail & Related papers (2023-11-01T09:08:35Z) - Learned harmonic mean estimation of the marginal likelihood with
normalizing flows [6.219412541001482]
We introduce the use of normalizing flows to represent the importance sampling target distribution.
The code implementing the learned harmonic mean, which is publicly available, has been updated to now support normalizing flows.
arXiv Detail & Related papers (2023-06-30T18:00:02Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.