論文の概要: UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images
- arxiv url: http://arxiv.org/abs/2410.08092v1
- Date: Thu, 10 Oct 2024 16:33:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 05:25:16.804733
- Title: UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images
- Title(参考訳): UW-SDF:水中マルチビュー単眼画像からのニューラルSDF再構成のためのハイブリッド幾何学的先駆体
- Authors: Zeyu Chen, Jingyi Tang, Gu Wang, Shengquan Li, Xinghui Li, Xiangyang Ji, Xiu Li,
- Abstract要約: ニューラルSDFに基づく多視点水中画像から対象物を再構成するフレームワークを提案する。
再建過程を最適化するためのハイブリッドな幾何学的先行手法を導入し、神経SDF再建の質と効率を著しく向上させる。
- 参考スコア(独自算出の注目度): 63.32490897641344
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Due to the unique characteristics of underwater environments, accurate 3D reconstruction of underwater objects poses a challenging problem in tasks such as underwater exploration and mapping. Traditional methods that rely on multiple sensor data for 3D reconstruction are time-consuming and face challenges in data acquisition in underwater scenarios. We propose UW-SDF, a framework for reconstructing target objects from multi-view underwater images based on neural SDF. We introduce hybrid geometric priors to optimize the reconstruction process, markedly enhancing the quality and efficiency of neural SDF reconstruction. Additionally, to address the challenge of segmentation consistency in multi-view images, we propose a novel few-shot multi-view target segmentation strategy using the general-purpose segmentation model (SAM), enabling rapid automatic segmentation of unseen objects. Through extensive qualitative and quantitative experiments on diverse datasets, we demonstrate that our proposed method outperforms the traditional underwater 3D reconstruction method and other neural rendering approaches in the field of underwater 3D reconstruction.
- Abstract(参考訳): 水中環境の特異な特徴により、水中の探査やマッピングといった作業において、正確な水中物体の3D再構成は難しい問題となる。
従来の3D再構成のための複数のセンサーデータに依存した手法は、水中シナリオにおけるデータ取得に時間を要するため、課題に直面している。
ニューラルSDFに基づく多視点水中画像から対象物を再構成するフレームワークであるUW-SDFを提案する。
再建過程を最適化するためのハイブリッドな幾何学的先行手法を導入し、神経SDF再建の質と効率を著しく向上させる。
さらに,多視点画像におけるセグメンテーション一貫性の課題に対処するために,汎用セグメンテーションモデル(SAM)を用いた複数視点ターゲットセグメンテーション戦略を提案する。
多様なデータセットの定性的および定量的な実験を通じて,提案手法は従来の水中3次元再構成法や,水中3次元再構成の分野における他のニューラルネットワーク手法よりも優れていることを示した。
関連論文リスト
- EasyHOI: Unleashing the Power of Large Models for Reconstructing Hand-Object Interactions in the Wild [79.71523320368388]
本研究の目的は,手動物体のインタラクションを単一視点画像から再構築することである。
まず、手ポーズとオブジェクト形状を推定する新しいパイプラインを設計する。
最初の再構築では、事前に誘導された最適化方式を採用する。
論文 参考訳(メタデータ) (2024-11-21T16:33:35Z) - UMono: Physical Model Informed Hybrid CNN-Transformer Framework for Underwater Monocular Depth Estimation [5.596432047035205]
水中の単分子深度推定は、水中のシーンの3次元再構成などの作業の基礎となる。
既存の手法では、水中環境の特徴を考慮できない。
本稿では,UMonoと呼ばれる水中単分子深度推定のためのエンドツーエンド学習フレームワークについて述べる。
論文 参考訳(メタデータ) (2024-07-25T07:52:11Z) - A Physical Model-Guided Framework for Underwater Image Enhancement and Depth Estimation [19.204227769408725]
既存の水中画像強調手法では、深度や対光といった画像モデルパラメータを正確に推定することができない。
先進的なUIEモデルとDeep Degradation Modelを併用したモデル誘導フレームワークを提案する。
本フレームワークは水中の多様なシーンにまたがって顕著な拡張効果をもたらす。
論文 参考訳(メタデータ) (2024-07-05T03:10:13Z) - Scene 3-D Reconstruction System in Scattering Medium [9.044356059297595]
既存の水中3D再構築システムは、大規模な訓練時間や低効率といった課題に直面している。
本稿では,これらの課題に対処し,高速で高品質な3次元再構成を実現するため,水中3次元再構成システムを提案する。
論文 参考訳(メタデータ) (2023-12-14T14:55:16Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
最先端のニューラル暗黙法は、多くの入力ビューから単純なシーンの高品質な再構築を可能にする。
これは主に、十分な制約を提供していないRGB再構築損失の固有の曖昧さによって引き起こされる。
近年の単分子形状予測の分野での進歩に触発され, ニューラルな暗黙的表面再構成の改善にこれらの方法が役立つかを探究する。
論文 参考訳(メタデータ) (2022-06-01T17:58:15Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
そこで我々は,インターネット写真コレクションから効率よく高精度な表面再構成を実現する新しい手法を提案する。
そこで本研究では,これらのシーンにおける再構成性能を評価するための新しいベンチマークとプロトコルを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:59:53Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z) - 3D Surface Reconstruction From Multi-Date Satellite Images [11.84274417463238]
本研究では,複数の衛星画像から点雲を再構成することのできるStructure from Motion (SfM) ベースのパイプラインの拡張を提案する。
衛星画像のコンテキストにおいて、最先端メッシュ再構成アルゴリズムを利用するために必須となるいくつかのステップについて、詳細な説明を提供する。
提案したパイプラインと現在のメッシュアルゴリズムが組み合わさって、完全性と中央値エラーの点で最先端のクラウド再構築アルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2021-02-04T09:23:21Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
本稿では,任意の物体の高品質な形状と複雑な空間変化を持つBRDFを再構成する学習に基づく新しい手法を提案する。
まず、深層多視点ステレオネットワークを用いて、ビューごとの深度マップを推定する。
これらの深度マップは、異なるビューを粗く整列するために使用される。
本稿では,新しい多視点反射率推定ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-27T21:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。