論文の概要: LLMs Can Generate a Better Answer by Aggregating Their Own Responses
- arxiv url: http://arxiv.org/abs/2503.04104v1
- Date: Thu, 06 Mar 2025 05:25:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:00:23.983126
- Title: LLMs Can Generate a Better Answer by Aggregating Their Own Responses
- Title(参考訳): LLMは、自分のレスポンスを集約することで、より良い回答を生成できる
- Authors: Zichong Li, Xinyu Feng, Yuheng Cai, Zixuan Zhang, Tianyi Liu, Chen Liang, Weizhu Chen, Haoyu Wang, Tuo Zhao,
- Abstract要約: 大きな言語モデル(LLM)はタスク間で顕著な機能を示しているが、複雑な問題に直面している場合、追加のプロンプト技術を必要とすることが多い。
この制限は、共通LLMポストトレーニング手順が差別的判断タスクの明示的な監督を欠いているという事実に起因している、と我々は主張する。
本稿では,モデルの識別機能を必要とせず,解答品質を向上させる手法である生成自己集合(GSA)を提案する。
- 参考スコア(独自算出の注目度): 83.69632759174405
- License:
- Abstract: Large Language Models (LLMs) have shown remarkable capabilities across tasks, yet they often require additional prompting techniques when facing complex problems. While approaches like self-correction and response selection have emerged as popular solutions, recent studies have shown these methods perform poorly when relying on the LLM itself to provide feedback or selection criteria. We argue this limitation stems from the fact that common LLM post-training procedures lack explicit supervision for discriminative judgment tasks. In this paper, we propose Generative Self-Aggregation (GSA), a novel prompting method that improves answer quality without requiring the model's discriminative capabilities. GSA first samples multiple diverse responses from the LLM, then aggregates them to obtain an improved solution. Unlike previous approaches, our method does not require the LLM to correct errors or compare response quality; instead, it leverages the model's generative abilities to synthesize a new response based on the context of multiple samples. While GSA shares similarities with the self-consistency (SC) approach for response aggregation, SC requires specific verifiable tokens to enable majority voting. In contrast, our approach is more general and can be applied to open-ended tasks. Empirical evaluation demonstrates that GSA effectively improves response quality across various tasks, including mathematical reasoning, knowledge-based problems, and open-ended generation tasks such as code synthesis and conversational responses.
- Abstract(参考訳): 大きな言語モデル(LLM)はタスク間で顕著な機能を示しているが、複雑な問題に直面している場合、追加のプロンプト技術を必要とすることが多い。
自己補正や応答選択といった手法がポピュラーなソリューションとして登場したが、近年の研究では、フィードバックや選択基準を提供するためにLLM自体に依存する場合、これらの手法が不十分であることが示されている。
この制限は、共通LLMポストトレーニング手順が差別的判断タスクの明示的な監督を欠いているという事実に起因している、と我々は主張する。
本稿では,モデルの識別機能を必要とせず,応答品質を向上させる手法である生成自己集合(GSA)を提案する。
GSAはまずLSMから様々な反応を採取し、その後それらを集約して改善された解を得る。
従来の手法とは異なり,本手法では誤り訂正や応答品質比較をLCMに要求せず,モデルの生成能力を活用して,複数のサンプルのコンテキストに基づいて新しい応答を合成する。
GSAは応答アグリゲーションのための自己整合性(SC)アプローチと類似性を持っているが、SCは多数決を可能にするために特定の検証可能なトークンを必要とする。
対照的に、我々のアプローチはより一般的であり、オープンなタスクに適用できる。
経験的評価により、GSAは、数学的推論、知識に基づく問題、コード合成や会話応答などのオープンな生成タスクなど、様々なタスクにおける応答品質を効果的に向上することが示された。
関連論文リスト
- Self-Instructed Derived Prompt Generation Meets In-Context Learning: Unlocking New Potential of Black-Box LLMs [30.333277284839053]
大規模言語モデル(LLM)は、高品質な応答を生成することに成功している。
応答品質を向上させる既存の方法は、しばしば即時改善モデルを含む。
我々は、LLMにより効果的な応答を提供するための自己指示型インコンテキスト学習フレームワークを導入する。
論文 参考訳(メタデータ) (2024-09-03T02:42:39Z) - Towards Hierarchical Multi-Agent Workflows for Zero-Shot Prompt Optimization [19.200989737492595]
大規模言語モデル(LLM)は、ユーザの質問に答える上で大きな進歩を見せている。
LLMの出力の品質はプロンプト設計に大きく依存しており、優れたプロンプトによってLLMが非常に難しい問題に正しく答えられる可能性がある。
LLMの階層構造を提案し、まず、正確な指示と正確な単語を階層的に生成し、次に、このプロンプトを用いてユーザクエリの最終回答を生成する。
論文 参考訳(メタデータ) (2024-05-30T17:05:45Z) - SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs [85.54906813106683]
大規模言語モデル(LLM)を用いたオープンドメイン質問応答(ODQA)の簡易かつ効果的なフレームワークを提案する。
SuRe は LLM が与えられた質問に対するより正確な回答を予測するのに役立つ。
様々なODQAベンチマークの実験結果はSuReの優位性を示し、標準的なプロンプトアプローチよりも4.6%、F1スコアが4.0%向上した。
論文 参考訳(メタデータ) (2024-04-17T01:15:54Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - RankPrompt: Step-by-Step Comparisons Make Language Models Better Reasoners [38.30539869264287]
大きな言語モデル(LLM)は、様々な推論タスクで素晴らしいパフォーマンスを実現しています。
しかし、ChatGPTのような最先端のLCMでさえ、推論プロセス中に論理的な誤りを犯しやすい。
新たなプロンプト手法である RankPrompt を導入し,LLM が追加リソースを必要とせずに応答を自己ランクできる手法を提案する。
論文 参考訳(メタデータ) (2024-03-19T02:34:18Z) - Fine-Grained Self-Endorsement Improves Factuality and Reasoning [72.83651220132495]
本研究は, 大規模言語モデル (LLM) 世代を推定時に改善するために, ファクト・コンプレッション・幻覚を緩和する。
本稿では,複数のサンプル応答におけるファクトレベルの詳細な比較を生かした自己組織化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-23T22:24:40Z) - Rescue: Ranking LLM Responses with Partial Ordering to Improve Response Generation [28.89786334298637]
ランキングメトリクスを用いたLCMの最適化手法を開発した。
従来の完全順序付けではなく、部分順序付けを提唱する。
ベンチマークデータセットを用いて,システムの改善された応答生成能力を検証した。
論文 参考訳(メタデータ) (2023-11-15T17:27:14Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
本稿では,Rephrase and Respond'(RaR)という手法を提案する。
RaRは、パフォーマンスを改善するためのシンプルだが効果的なプロンプト方法として機能する。
また,RaRは理論的にも経験的にも,一般的なChain-of-Thought(CoT)法と相補的であることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:43:34Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
本研究では,現在の世界知識をテストする質問に答える文脈において,大規模言語モデル(LLM)の事実性について検討する。
多様な質問や回答のタイプを含む新しい動的QAベンチマークであるFreshQAを紹介する。
我々は,2モード評価法により,閉じたLLMとオープンソースのLLMの多種多様な配列をベンチマークし,その正しさと幻覚の両面を計測する。
これらの結果に触発されたFreshPromptは、FreshQA上でのLLMの性能を大幅に向上させる単純な数ショットプロンプトである。
論文 参考訳(メタデータ) (2023-10-05T00:04:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。