Image Computation for Quantum Transition Systems
- URL: http://arxiv.org/abs/2503.04146v1
- Date: Thu, 06 Mar 2025 06:49:49 GMT
- Title: Image Computation for Quantum Transition Systems
- Authors: Xin Hong, Dingchao Gao, Sanjiang Li, Shenggang Ying, Mingsheng Ying,
- Abstract summary: This paper advances the development of model checking quantum systems by providing efficient image algorithms for quantum transition systems.<n>Our experiments demonstrate that our contraction partition-based algorithm can greatly improve the efficiency of image computation for quantum transition systems.
- Score: 5.645821844264387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid progress in quantum hardware and software, the need for verification of quantum systems becomes increasingly crucial. While model checking is a dominant and very successful technique for verifying classical systems, its application to quantum systems is still an underdeveloped research area. This paper advances the development of model checking quantum systems by providing efficient image computation algorithms for quantum transition systems, which play a fundamental role in model checking. In our approach, we represent quantum circuits as tensor networks and design algorithms by leveraging the properties of tensor networks and tensor decision diagrams. Our experiments demonstrate that our contraction partition-based algorithm can greatly improve the efficiency of image computation for quantum transition systems.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Demonstration of Hardware Efficient Photonic Variational Quantum Algorithm [2.4630731476141365]
We show that single photons and linear optical networks are sufficient for implementing Variational Quantum Algorithms.
We show this by a proof-of-principle demonstration of a variational approach to tackle an instance of a factorization task.
arXiv Detail & Related papers (2024-08-19T18:26:57Z) - Quantum Visual Feature Encoding Revisited [8.839645003062456]
This paper revisits the quantum visual encoding strategies, the initial step in quantum machine learning.
Investigating the root cause, we uncover that the existing quantum encoding design fails to ensure information preservation of the visual features after the encoding process.
We introduce a new loss function named Quantum Information Preserving to minimize this gap, resulting in enhanced performance of quantum machine learning algorithms.
arXiv Detail & Related papers (2024-05-30T06:15:08Z) - Efficient Quantum Modular Arithmetics for the ISQ Era [0.0]
This study presents an array of quantum circuits, each precision-engineered for modular arithmetic functions.
We provide a theoretical framework and practical implementations in the PennyLane quantum software.
arXiv Detail & Related papers (2023-11-14T21:34:39Z) - Quantum machine learning for image classification [39.58317527488534]
This research introduces two quantum machine learning models that leverage the principles of quantum mechanics for effective computations.
Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era.
A second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process.
arXiv Detail & Related papers (2023-04-18T18:23:20Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Impact of the form of weighted networks on the quantum extreme reservoir computation [0.0]
The quantum extreme reservoir computation (QERC) is a versatile quantum neural network model.
We show how a simple Hamiltonian model based on a disordered discrete time crystal with its simple implementation route provides nearly-optimal performance.
arXiv Detail & Related papers (2022-11-15T01:50:47Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Anomaly Detection: Unsupervised mapping of phase
diagrams on a physical quantum computer [0.0]
We propose variational quantum anomaly detection, an unsupervised quantum machine learning algorithm to analyze quantum data from quantum simulation.
The algorithm is used to extract the phase diagram of a system with no prior physical knowledge.
We show that it can be used with readily accessible devices nowadays and perform the algorithm on a real quantum computer.
arXiv Detail & Related papers (2021-06-15T06:54:47Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.