論文の概要: Rethinking Contrastive Learning in Session-based Recommendation
- arxiv url: http://arxiv.org/abs/2506.05044v1
- Date: Thu, 05 Jun 2025 13:52:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.739373
- Title: Rethinking Contrastive Learning in Session-based Recommendation
- Title(参考訳): セッションベース勧告におけるコントラスト学習の再考
- Authors: Xiaokun Zhang, Bo Xu, Fenglong Ma, Zhizheng Wang, Liang Yang, Hongfei Lin,
- Abstract要約: セッションベースのリコメンデーションは、限られた振る舞いに基づいて匿名ユーザの意図を予測することを目的としている。
セッションベースレコメンデーションのためのマルチモーダル適応型コントラスト学習フレームワークMACLを提案する。
- 参考スコア(独自算出の注目度): 31.888392523713435
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Session-based recommendation aims to predict intents of anonymous users based on limited behaviors. With the ability in alleviating data sparsity, contrastive learning is prevailing in the task. However, we spot that existing contrastive learning based methods still suffer from three obstacles: (1) they overlook item-level sparsity and primarily focus on session-level sparsity; (2) they typically augment sessions using item IDs like crop, mask and reorder, failing to ensure the semantic consistency of augmented views; (3) they treat all positive-negative signals equally, without considering their varying utility. To this end, we propose a novel multi-modal adaptive contrastive learning framework called MACL for session-based recommendation. In MACL, a multi-modal augmentation is devised to generate semantically consistent views at both item and session levels by leveraging item multi-modal features. Besides, we present an adaptive contrastive loss that distinguishes varying contributions of positive-negative signals to improve self-supervised learning. Extensive experiments on three real-world datasets demonstrate the superiority of MACL over state-of-the-art methods.
- Abstract(参考訳): セッションベースのリコメンデーションは、限られた振る舞いに基づいて匿名ユーザの意図を予測することを目的としている。
データの分散を緩和する能力によって、タスクでは対照的な学習が一般的になる。
しかし,既存のコントラスト学習手法では,(1)アイテムレベルの空間性を見落とし,主にセッションレベルの空間性に注目している,(2)作物,マスク,リオーダーといった項目IDを用いたセッションを拡大し,拡張ビューのセマンティックな一貫性を確保できない,(3)すべての肯定的な信号を扱う,という3つの障害に悩まされている。
そこで本研究では,MACLと呼ばれるマルチモーダル適応型コントラスト学習フレームワークをセッションベースで提案する。
MACLでは、アイテムマルチモーダル機能を活用して、アイテムレベルとセッションレベルの両方でセマンティックに一貫したビューを生成するために、マルチモーダル拡張が考案されている。
さらに,自己教師付き学習を改善するために,正負の信号の様々な寄与を区別する適応的コントラスト損失を提案する。
3つの実世界のデータセットに対する大規模な実験は、最先端の手法よりもMACLの方が優れていることを示した。
関連論文リスト
- Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID [82.12123628480371]
教師なしの人物再識別(USL-VI-ReID)は、モデル学習のための人間のアノテーションを使わずに、同じ人物の歩行者像を異なるモードでマッチングすることを目指している。
従来の手法では、ラベルアソシエーションアルゴリズムを用いて異質な画像の擬似ラベルを統一し、グローバルな特徴学習のためのコントラスト学習フレームワークを設計していた。
本稿では,各モダリティによって強調される特定のきめ細かいパターンを対象とするSALCR(Semantic-Aligned Learning with Collaborative Refinement)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-27T13:58:12Z) - Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation [17.18176550968383]
本稿では,SRA-CL(Semantic Retrieval Augmented Contrastive Learning)という手法を提案する。
SRA-CLは、(1)大規模言語モデル(LLM)を利用して多様なユーザの嗜好を理解し、意味的に類似したユーザを検索して、学習可能なサンプル手法で信頼性の高い正のサンプルを作成する、(2) LLMを使ってアイテムを理解し、類似したアイテムを検索する、アイテムセマンティック検索という2つの主要コンポーネントから構成される。
論文 参考訳(メタデータ) (2025-03-06T07:25:19Z) - Learning the Unlearned: Mitigating Feature Suppression in Contrastive Learning [45.25602203155762]
自己監督型コントラスト学習は、ラベルのないデータから高品質な表現を導き出すのに有効であることが証明されている。
単目的学習とマルチモーダル学習の両方を妨げる大きな課題は、特徴抑制である。
本稿では,新しいモデルに依存しないマルチステージコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-19T04:13:33Z) - Improving One-class Recommendation with Multi-tasking on Various
Preference Intensities [1.8416014644193064]
一流のレコメンデーションでは、ユーザの暗黙のフィードバックに基づいてレコメンデーションを行う必要があります。
暗黙的なフィードバックから各信号の様々な好み強度を考慮に入れたマルチタスクフレームワークを提案する。
提案手法は,3つの大規模実世界のベンチマークデータセットに対して,最先端の手法よりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2024-01-18T18:59:55Z) - Adaptive In-Context Learning with Large Language Models for Bundle Generation [31.667010709144773]
本稿では、異なるユーザセッションに基づいて、パーソナライズされたバンドル生成と、その基盤となる意図推論という2つの相互関連タスクについて検討する。
大規模言語モデル(LLM)の推論能力に着想を得て,適応型インコンテキスト学習パラダイムを提案する。
提案手法の有効性を実世界の3つのデータセットで実証した。
論文 参考訳(メタデータ) (2023-12-26T08:24:24Z) - DRDT: Dynamic Reflection with Divergent Thinking for LLM-based
Sequential Recommendation [53.62727171363384]
進化的思考を伴う動的反射(Dynamic Reflection with Divergent Thinking)という新しい推論原理を導入する。
我々の方法論はダイナミックリフレクション(動的リフレクション)であり、探索、批評、反射を通じて人間の学習をエミュレートするプロセスである。
6つの事前学習 LLM を用いた3つのデータセットに対するアプローチの評価を行った。
論文 参考訳(メタデータ) (2023-12-18T16:41:22Z) - DUET: Cross-modal Semantic Grounding for Contrastive Zero-shot Learning [37.48292304239107]
本稿では, DUET という変換器を用いたエンドツーエンドZSL手法を提案する。
画像からセマンティック属性を分離するモデルの能力を調べるために,モーダルなセマンティックグラウンドネットワークを開発した。
DUETは、しばしば最先端のパフォーマンスを達成することができ、そのコンポーネントは有効であり、予測は解釈可能である。
論文 参考訳(メタデータ) (2022-07-04T11:12:12Z) - Intent Contrastive Learning for Sequential Recommendation [86.54439927038968]
ユーザの意図を表現するために潜伏変数を導入し,クラスタリングにより潜伏変数の分布関数を学習する。
我々は,学習意図を対照的なSSLによってSRモデルに活用し,シーケンスのビューとそれに対応するインテントとの一致を最大化することを提案する。
4つの実世界のデータセットで実施された実験は、提案した学習パラダイムの優位性を示している。
論文 参考訳(メタデータ) (2022-02-05T09:24:13Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
画像とテキストを共同で表現するマルチモーダル表現学習手法が提案されている。
これらの手法は,大規模マルチモーダル事前学習から高レベルな意味情報を取得することにより,優れた性能を実現する。
そこで本稿では,非バイアスのDense Contrastive Visual-Linguistic Pretrainingを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:20:13Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
現実世界のアプリケーションで特定のアクション理解の需要が高まっているため、きめ細かいアクション認識が注目を集めている。
そこで本研究では,各クラスに付与されるサンプル数だけを用いて,新規なきめ細かい動作を認識することを目的とした,数発のきめ細かな動作認識問題を提案する。
粒度の粗い動作では進展があったが、既存の数発の認識手法では、粒度の細かい動作を扱う2つの問題に遭遇する。
論文 参考訳(メタデータ) (2021-08-15T02:21:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。