論文の概要: SRA-CL: Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation
- arxiv url: http://arxiv.org/abs/2503.04162v3
- Date: Sun, 05 Oct 2025 06:43:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 19:16:49.352101
- Title: SRA-CL: Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation
- Title(参考訳): SRA-CL:Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation
- Authors: Ziqiang Cui, Yunpeng Weng, Xing Tang, Xiaokun Zhang, Shiwei Li, Peiyang Liu, Bowei He, Dugang Liu, Weihong Luo, Xiuqiang He, Chen Ma,
- Abstract要約: SRA-CL(Semantic Retrieval Augmented Contrastive Learning)という新しい手法を提案する。
SRA-CLはLLMのセマンティック理解と推論機能を活用し、ユーザの好みやアイテムの特徴をキャプチャする表現的な埋め込みを生成する。
SRA-CLはプラグイン・アンド・プレイの設計を採用しており、既存のシーケンシャルレコメンデーションアーキテクチャとシームレスに統合できる。
- 参考スコア(独自算出の注目度): 23.050104678143935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning has shown effectiveness in improving sequential recommendation models. However, existing methods still face challenges in generating high-quality contrastive pairs: they either rely on random perturbations that corrupt user preference patterns or depend on sparse collaborative data that generates unreliable contrastive pairs. Furthermore, existing approaches typically require predefined selection rules that impose strong assumptions, limiting the model's ability to autonomously learn optimal contrastive pairs. To address these limitations, we propose a novel approach named Semantic Retrieval Augmented Contrastive Learning (SRA-CL). SRA-CL leverages the semantic understanding and reasoning capabilities of LLMs to generate expressive embeddings that capture both user preferences and item characteristics. These semantic embeddings enable the construction of candidate pools for inter-user and intra-user contrastive learning through semantic-based retrieval. To further enhance the quality of the contrastive samples, we introduce a learnable sample synthesizer that optimizes the contrastive sample generation process during model training. SRA-CL adopts a plug-and-play design, enabling seamless integration with existing sequential recommendation architectures. Extensive experiments on four public datasets demonstrate the effectiveness and model-agnostic nature of our approach.
- Abstract(参考訳): コントラスト学習はシーケンシャルレコメンデーションモデルの改善に有効である。
しかし、既存の手法は、高品質なコントラストペアを生成する際の課題に直面している。それらは、ユーザの好みパターンを乱すランダムな摂動に依存するか、信頼できないコントラストペアを生成するスパースなコラボレーティブデータに依存する。
さらに、既存のアプローチは通常、強い仮定を課す事前定義された選択規則を必要とし、モデルが最適なコントラッシブなペアを自律的に学習する能力を制限する。
これらの制約に対処するため,SRA-CL (Semantic Retrieval Augmented Contrastive Learning) という新しい手法を提案する。
SRA-CLは、LLMのセマンティック理解と推論機能を利用して、ユーザの好みとアイテム特性の両方をキャプチャする表現的な埋め込みを生成する。
これらのセマンティック埋め込みは、セマンティックベースの検索を通じて、ユーザ間およびユーザ間のコントラスト学習のための候補プールの構築を可能にする。
対照的なサンプルの質をさらに高めるために,モデルトレーニング中の対照的なサンプル生成プロセスを最適化する学習可能なサンプルシンセサイザーを導入する。
SRA-CLはプラグイン・アンド・プレイの設計を採用しており、既存のシーケンシャルレコメンデーションアーキテクチャとシームレスに統合できる。
4つの公開データセットに対する大規模な実験は、我々のアプローチの有効性とモデルに依存しない性質を示している。
関連論文リスト
- Rethinking Contrastive Learning in Session-based Recommendation [31.888392523713435]
セッションベースのリコメンデーションは、限られた振る舞いに基づいて匿名ユーザの意図を予測することを目的としている。
セッションベースレコメンデーションのためのマルチモーダル適応型コントラスト学習フレームワークMACLを提案する。
論文 参考訳(メタデータ) (2025-06-05T13:52:57Z) - Multi-Level Aware Preference Learning: Enhancing RLHF for Complex Multi-Instruction Tasks [81.44256822500257]
RLHFは、人工知能システムと人間の好みを結びつける主要なアプローチとして登場した。
RLHFは、複雑なマルチインストラクションタスクに直面すると、不十分なコンプライアンス機能を示す。
本稿では,マルチインストラクション能力を向上させる新しいMAPL(Multi-level Aware Preference Learning)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-19T08:33:11Z) - Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID [82.12123628480371]
教師なしの人物再識別(USL-VI-ReID)は、モデル学習のための人間のアノテーションを使わずに、同じ人物の歩行者像を異なるモードでマッチングすることを目指している。
従来の手法では、ラベルアソシエーションアルゴリズムを用いて異質な画像の擬似ラベルを統一し、グローバルな特徴学習のためのコントラスト学習フレームワークを設計していた。
本稿では,各モダリティによって強調される特定のきめ細かいパターンを対象とするSALCR(Semantic-Aligned Learning with Collaborative Refinement)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-27T13:58:12Z) - A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
新たな合成データ生成パイプラインを用いて48,000の命令追従プロンプトを生成する。
合成プロンプトでは、リジェクションサンプリング(RS)とモンテカルロ木探索(MCTS)の2つの選好データセットキュレーション手法を用いる。
実験により、MCTSが生成した選好ペアにおける共有プレフィックスは、限界はあるが一貫した改善をもたらすことが明らかになった。
高コントラストの選好ペアは一般的に低コントラストのペアよりも優れているが、両者を組み合わせることで最高のパフォーマンスが得られることが多い。
論文 参考訳(メタデータ) (2024-12-18T15:38:39Z) - LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
本研究では,ユーザの興味を2つのレベル – 行動と意味論 – でモデル化する,明示的で暗黙的な多目的学習フレームワークを提案する。
提案するEIMFフレームワークは,小型モデルとLLMを効果的に組み合わせ,多目的モデリングの精度を向上させる。
論文 参考訳(メタデータ) (2024-11-14T13:00:23Z) - Learning Multi-Aspect Item Palette: A Semantic Tokenization Framework for Generative Recommendation [55.99632509895994]
マルチアスペクトセマンティックトークン化のための新しいアプローチであるLAMIAを紹介する。
単一の埋め込みを使用するRQ-VAEとは異なり、LAMIAは独立的でセマンティックな並列な埋め込みの集合である「アイテムパレット」を学習する。
その結果,提案手法よりも提案手法の精度が大幅に向上した。
論文 参考訳(メタデータ) (2024-09-11T13:49:48Z) - ItTakesTwo: Leveraging Peer Representations for Semi-supervised LiDAR Semantic Segmentation [24.743048965822297]
本稿では,ItTakesTwo (IT2) と呼ばれる半教師付きLiDARセマンティックセマンティックセマンティクスフレームワークを提案する。
IT2は、ピアLiDAR表現からの一貫性のある予測を保証するために設計されており、一貫性学習における摂動効率を改善する。
その結果,本手法は従来のSOTA法よりも顕著に改善されていることがわかった。
論文 参考訳(メタデータ) (2024-07-09T18:26:53Z) - Diffusion-based Contrastive Learning for Sequential Recommendation [6.3482831836623355]
本稿では,CaDiRecという,文脈対応拡散に基づく逐次推薦のためのコントラスト学習を提案する。
CaDiRecは、コンテキスト対応拡散モデルを使用して、シーケンス内の所定の位置に対する代替アイテムを生成する。
フレームワーク全体をエンドツーエンドでトレーニングし、拡散モデルとレコメンデーションモデルの間でアイテムの埋め込みを共有します。
論文 参考訳(メタデータ) (2024-05-15T14:20:37Z) - Deep Semi-supervised Learning with Double-Contrast of Features and
Semantics [2.2230089845369094]
本稿では,エンド・ツー・エンドの半教師あり学習における意味と特徴の二重コントラストを提案する。
我々は情報理論を活用し、意味論と特徴の二重コントラストの合理性を説明する。
論文 参考訳(メタデータ) (2022-11-28T09:08:19Z) - Learning Transferable Adversarial Robust Representations via Multi-view
Consistency [57.73073964318167]
デュアルエンコーダを用いたメタ逆多視点表現学習フレームワークを提案する。
未確認領域からの少数ショット学習タスクにおけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2022-10-19T11:48:01Z) - Intent Contrastive Learning for Sequential Recommendation [86.54439927038968]
ユーザの意図を表現するために潜伏変数を導入し,クラスタリングにより潜伏変数の分布関数を学習する。
我々は,学習意図を対照的なSSLによってSRモデルに活用し,シーケンスのビューとそれに対応するインテントとの一致を最大化することを提案する。
4つの実世界のデータセットで実施された実験は、提案した学習パラダイムの優位性を示している。
論文 参考訳(メタデータ) (2022-02-05T09:24:13Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - Contrastive Learning with Adversarial Examples [79.39156814887133]
コントラスト学習(Contrastive Learning, CL)は、視覚表現の自己教師型学習(SSL)において一般的な手法である。
本稿では,コンストラクティブ・ラーニングのための新しい逆例群を紹介し,これらの例を用いてCLAEと表記されるSSLの新しい逆トレーニングアルゴリズムを定義する。
論文 参考訳(メタデータ) (2020-10-22T20:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。