論文の概要: Unsupervised anomaly detection on cybersecurity data streams: a case with BETH dataset
- arxiv url: http://arxiv.org/abs/2503.04178v1
- Date: Thu, 06 Mar 2025 07:45:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:00:02.800127
- Title: Unsupervised anomaly detection on cybersecurity data streams: a case with BETH dataset
- Title(参考訳): サイバーセキュリティデータストリームにおける教師なし異常検出--BETHデータセットを用いて
- Authors: Evgeniy Eremin,
- Abstract要約: ストリーム学習アルゴリズムは、ほぼリアルタイムのデータ処理を提供することができる。
本稿では,サイバーセキュリティイベントを伴うBETHデータセット上の3つのPythonストリーム機械学習ライブラリの10のアルゴリズムの結果について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In modern world the importance of cybersecurity of various systems is increasing from year to year. The number of information security events generated by information security tools grows up with the development of the IT infrastructure. At the same time, the cyber threat landscape does not remain constant, and monitoring should take into account both already known attack indicators and those for which there are no signature rules in information security products of various classes yet. Detecting anomalies in large cybersecurity data streams is a complex task that, if properly addressed, can allow for timely response to atypical and previously unknown cyber threats. The possibilities of using of offline algorithms may be limited for a number of reasons related to the time of training and the frequency of retraining. Using stream learning algorithms for solving this task is capable of providing near-real-time data processing. This article examines the results of ten algorithms from three Python stream machine-learning libraries on BETH dataset with cybersecurity events, which contains information about the creation, cloning, and destruction of operating system processes collected using extended eBPF. ROC-AUC metric and total processing time of processing with these algorithms are presented. Several combinations of features and the order of events are considered. In conclusion, some mentions are given about the most promising algorithms and possible directions for further research are outlined.
- Abstract(参考訳): 現代の世界では、様々なシステムにおけるサイバーセキュリティの重要性が年々増している。
情報セキュリティツールが生成する情報セキュリティイベントの数は、ITインフラストラクチャの開発に伴って増加する。
同時に、サイバー脅威の状況は一定ではなく、監視は既知の攻撃指標と、様々なクラスの情報セキュリティ製品に署名規則がないものの両方を考慮する必要がある。
大規模なサイバーセキュリティデータストリームの異常を検出することは、適切に対処すれば、非典型的で以前は知られていなかったサイバー脅威に対するタイムリーな応答を可能にする、複雑なタスクである。
オフラインアルゴリズムの使用の可能性は、トレーニングの時間と再トレーニングの頻度に関連するいくつかの理由により制限される可能性がある。
このタスクを解決するためにストリーム学習アルゴリズムを使用すると、ほぼリアルタイムのデータ処理を提供することができる。
本稿では, BETHデータセット上の3つのPythonストリーム機械学習ライブラリから得られた10のアルゴリズムと, 拡張eBPFを用いて収集したオペレーティングシステムプロセスの生成, クローニング, 破壊に関する情報を含むサイバーセキュリティイベントについて検討する。
ROC-AUCメトリックとこれらのアルゴリズムによる処理の総処理時間を示す。
いくつかの特徴の組み合わせとイベントの順序が考慮されている。
結論として、最も有望なアルゴリズムと、さらなる研究の可能な方向性について、いくつかの言及がなされている。
関連論文リスト
- Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Ensemble learning techniques for intrusion detection system in the
context of cybersecurity [0.0]
侵入検知システムの概念は、より良い結果を得るためにデータマイニングと機械学習オレンジツールを応用した。
本研究の目的は,SVM (Support Vector Machine) と kNearest Neighbour (kNN) アルゴリズムによって支援されたスタックリング手法を用いて,アンサンブル学習手法を検討することである。
論文 参考訳(メタデータ) (2022-12-21T10:50:54Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Robustness Evaluation of Deep Unsupervised Learning Algorithms for
Intrusion Detection Systems [0.0]
本稿では, 汚染データに対する侵入検出のための6つの最新のディープラーニングアルゴリズムの堅牢性を評価する。
本研究で用いた最先端のアルゴリズムは,データ汚染に敏感であり,データ摂動に対する自己防衛の重要性を明らかにしている。
論文 参考訳(メタデータ) (2022-06-25T02:28:39Z) - Zero Day Threat Detection Using Graph and Flow Based Security Telemetry [3.3029515721630855]
Zero Day Threats (ZDT) は、悪意あるアクターが情報技術(IT)ネットワークやインフラを攻撃・利用するための新しい手法である。
本稿では,ゼロデイ脅威検出に対するディープラーニングに基づくアプローチを導入し,リアルタイムに脅威を一般化し,スケールし,効果的に識別する。
論文 参考訳(メタデータ) (2022-05-04T19:30:48Z) - Multi-Source Data Fusion for Cyberattack Detection in Power Systems [1.8914160585516038]
複数のデータソースからの情報を融合することで,サイバーインシデントの発生を識別し,偽陽性を低減できることが示されている。
我々は、サイバー物理電力システムテストベッドでIDSを訓練するためのマルチソースデータ融合を行う。
提案するデータ融合アプリケーションを用いて偽データとコマンドインジェクションに基づく中間攻撃を推測する。
論文 参考訳(メタデータ) (2021-01-18T06:34:45Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - NERD: Neural Network for Edict of Risky Data Streams [0.0]
サイバーインシデントは、単純な接続損失から断続的な攻撃まで、幅広い原因を持つ可能性がある。
このシステムには侵入検知システムや監視ツールなど,複数の情報ソースが組み込まれている。
シンクパッケージ比のような20以上の重要な属性を使用して、潜在的なセキュリティインシデントを特定し、データを異なる優先順位カテゴリに分類する。
論文 参考訳(メタデータ) (2020-07-08T14:24:48Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
クラウドコンピューティングは、複雑で高性能でスケーラブルな計算のために、強力で必要不可欠な技術になっている。
データ生成の迅速化とボリュームは、データ管理とセキュリティに重大な課題をもたらし始めている。
ビッグデータ設定における侵入検知システム(IDS)の設計と展開が重要視されている。
論文 参考訳(メタデータ) (2020-05-23T20:57:12Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。