論文の概要: Conformal forecasting for surgical instrument trajectory
- arxiv url: http://arxiv.org/abs/2503.04191v1
- Date: Thu, 06 Mar 2025 08:06:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:59:35.190818
- Title: Conformal forecasting for surgical instrument trajectory
- Title(参考訳): 外科用器具軌道のコンフォーマル予測
- Authors: Sara Sangalli, Gary Sarwin, Ertunc Erdil, Carlo Serra, Ender Konukoglu,
- Abstract要約: 本研究では, 整合性予測と整合性量子レグレッションを応用し, 手術器具の動作予測における不確実性を推定する。
本研究は外科的指導に適合予測を適用した最初の研究である。
- 参考スコア(独自算出の注目度): 11.37120215795946
- License:
- Abstract: Forecasting surgical instrument trajectories and predicting the next surgical action recently started to attract attention from the research community. Both these tasks are crucial for automation and assistance in endoscopy surgery. Given the safety-critical nature of these tasks, reliable uncertainty quantification is essential. Conformal prediction is a fast-growing and widely recognized framework for uncertainty estimation in machine learning and computer vision, offering distribution-free, theoretically valid prediction intervals. In this work, we explore the application of standard conformal prediction and conformalized quantile regression to estimate uncertainty in forecasting surgical instrument motion, i.e., predicting direction and magnitude of surgical instruments' future motion. We analyze and compare their coverage and interval sizes, assessing the impact of multiple hypothesis testing and correction methods. Additionally, we show how these techniques can be employed to produce useful uncertainty heatmaps. To the best of our knowledge, this is the first study applying conformal prediction to surgical guidance, marking an initial step toward constructing principled prediction intervals with formal coverage guarantees in this domain.
- Abstract(参考訳): 外科器具の軌跡予測と次の外科的動作の予測は,最近,研究コミュニティから注目が集まっている。
これら2つのタスクは内視鏡手術の自動化と支援に不可欠である。
これらのタスクの安全性クリティカルな性質を考えると、確実な不確実性定量化が不可欠である。
コンフォーマル予測は、機械学習とコンピュータビジョンにおける不確実性推定のための急速に成長し広く認識されるフレームワークであり、分布のない理論上妥当な予測間隔を提供する。
本研究は,手術器の動きの予測における不確実性,すなわち手術器の将来の動きの方向と大きさを推定するために,標準共形予測と共形量子レグレッションの適用について検討する。
我々は,その範囲と間隔を解析・比較し,複数の仮説テストと修正手法の影響を評価した。
さらに,これらの手法が有用不確実性熱マップの創出に有効であることを示す。
我々の知る限り、本研究は外科的指導に整合予測を適用した最初の研究であり、この領域における公式なカバレッジ保証を伴う原則付き予測区間の構築に向けた最初のステップを示すものである。
関連論文リスト
- Quantitative Predictive Monitoring and Control for Safe Human-Machine Interaction [16.465501381705774]
安全でない人間と機械の相互作用は破滅的な失敗を引き起こす。
本研究では,人間の相互作用の不確実性を考慮した将来状態の予測手法を提案する。
提案手法は,1型糖尿病管理と半自律運転の2つのケーススタディに適用する。
論文 参考訳(メタデータ) (2024-12-17T22:46:39Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Hypergraph-Transformer (HGT) for Interactive Event Prediction in
Laparoscopic and Robotic Surgery [50.3022015601057]
腹腔内ビデオから外科的ワークフローの重要なインタラクティブな側面を理解し,予測できる予測型ニューラルネットワークを提案する。
我々は,既存の手術用データセットとアプリケーションに対するアプローチを検証し,アクション・トリプレットの検出と予測を行った。
この結果は、非構造的な代替案と比較して、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2024-02-03T00:58:05Z) - Forecasting Patient Flows with Pandemic Induced Concept Drift using
Explainable Machine Learning [0.0]
本研究では,患者フローの予測モデルを改善する新しい準リアルタイム変数群について検討した。
新型コロナウイルス(COVID-19)のアラートレベル(Alert Level)機能は、Googleの検索語や歩行者のトラフィックとともに、一般的な予測を生成するのに効果的だった。
論文 参考訳(メタデータ) (2022-11-01T20:42:26Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
本稿では、今後の介入に関するモデルの仮定を明確に伝達する手段として、介入政策と有害事象リスクの合同モデルを提案する。
死亡確率などの典型的なリスクスコアと将来の介入確率スコアとを組み合わせることで、より解釈可能な臨床予測がもたらされることを示す。
論文 参考訳(メタデータ) (2022-07-06T19:49:42Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
統計的に厳密な不確実性定量化の欠如は、AI結果の信頼を損なう重要な要因である。
分布自由不確実性定量化の最近の進歩は、これらの問題に対する実用的な解決策である。
本稿では, 正しい狭窄の重症度を含むことが保証される順序予測セットを形成する手法を実証する。
論文 参考訳(メタデータ) (2022-07-05T18:01:20Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
計算強化学習は、未来の感覚の予測を通じて、エージェントの世界の知覚を構築しようとする。
この一連の作業において、オープンな課題は、エージェントがどの予測が意思決定を最も支援できるかを、無限に多くの予測から決定することである。
本稿では,エージェントが何を予測するかを学習するメタ段階的な降下過程,(2)選択した予測の見積もり,3)将来の報酬を最大化するポリシーを生成する方法を紹介する。
論文 参考訳(メタデータ) (2022-06-13T21:31:06Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Uncertainty estimation for classification and risk prediction on medical
tabular data [0.0]
本研究は,医療データの分類とリスク予測のための不確実性推定の理解を深めるものである。
医療などのデータ共有分野において、モデルの予測の不確実性を測定する能力は、意思決定支援ツールの改善につながる可能性がある。
論文 参考訳(メタデータ) (2020-04-13T08:46:41Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z) - Bayesian Modelling in Practice: Using Uncertainty to Improve Trustworthiness in Medical Applications [2.446672595462589]
集中治療室(Intensive Care Unit、ICU)は、機械学習が臨床的意思決定に有用な支援を提供する可能性がある病院部門である。
実際には、破滅的な治療決定を未然に防ぐために、余計な治療を受けた医師に不確実な予測を提示すべきである。
ベイジアンモデリングとそれが提供する予測の不確実性が、誤った予測のリスクを軽減するためにどのように使用できるかを示す。
論文 参考訳(メタデータ) (2019-06-20T13:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。