論文の概要: Bayesian Modelling in Practice: Using Uncertainty to Improve Trustworthiness in Medical Applications
- arxiv url: http://arxiv.org/abs/1906.08619v2
- Date: Thu, 25 Jul 2024 08:29:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-28 18:55:51.688792
- Title: Bayesian Modelling in Practice: Using Uncertainty to Improve Trustworthiness in Medical Applications
- Title(参考訳): ベイジアンモデリングの実践 : 不確実性を用いた医療応用の信頼性向上
- Authors: David Ruhe, Giovanni Cinà, Michele Tonutti, Daan de Bruin, Paul Elbers,
- Abstract要約: 集中治療室(Intensive Care Unit、ICU)は、機械学習が臨床的意思決定に有用な支援を提供する可能性がある病院部門である。
実際には、破滅的な治療決定を未然に防ぐために、余計な治療を受けた医師に不確実な予測を提示すべきである。
ベイジアンモデリングとそれが提供する予測の不確実性が、誤った予測のリスクを軽減するためにどのように使用できるかを示す。
- 参考スコア(独自算出の注目度): 2.446672595462589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Intensive Care Unit (ICU) is a hospital department where machine learning has the potential to provide valuable assistance in clinical decision making. Classical machine learning models usually only provide point-estimates and no uncertainty of predictions. In practice, uncertain predictions should be presented to doctors with extra care in order to prevent potentially catastrophic treatment decisions. In this work we show how Bayesian modelling and the predictive uncertainty that it provides can be used to mitigate risk of misguided prediction and to detect out-of-domain examples in a medical setting. We derive analytically a bound on the prediction loss with respect to predictive uncertainty. The bound shows that uncertainty can mitigate loss. Furthermore, we apply a Bayesian Neural Network to the MIMIC-III dataset, predicting risk of mortality of ICU patients. Our empirical results show that uncertainty can indeed prevent potential errors and reliably identifies out-of-domain patients. These results suggest that Bayesian predictive uncertainty can greatly improve trustworthiness of machine learning models in high-risk settings such as the ICU.
- Abstract(参考訳): 集中治療室(Intensive Care Unit、ICU)は、機械学習が臨床的意思決定に有用な支援を提供する可能性がある病院部門である。
古典的な機械学習モデルは通常、ポイント推定のみを提供し、予測の不確実性はない。
実際には、破滅的な治療決定を未然に防ぐために、余計な治療を受けた医師に不確実な予測を提示すべきである。
本研究は, ベイズモデルとそれが提供する予測の不確実性が, 誤った予測のリスクを軽減し, 医療現場におけるドメイン外サンプルの検出にどのように役立つかを示す。
我々は予測の不確実性に関する予測損失を解析的に導出する。
境界は不確実性によって損失が軽減されることを示している。
さらに、MIMIC-IIIデータセットにベイズニューラルネットワークを適用し、ICU患者の死亡リスクを予測する。
実験の結果、不確実性は潜在的なエラーを確実に防止し、領域外患者を確実に特定できることが示された。
これらの結果から,ベイジアン予測の不確実性は,ICUのようなリスクの高い環境での機械学習モデルの信頼性を大幅に向上させる可能性が示唆された。
関連論文リスト
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
本稿では、今後の介入に関するモデルの仮定を明確に伝達する手段として、介入政策と有害事象リスクの合同モデルを提案する。
死亡確率などの典型的なリスクスコアと将来の介入確率スコアとを組み合わせることで、より解釈可能な臨床予測がもたらされることを示す。
論文 参考訳(メタデータ) (2022-07-06T19:49:42Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
統計的に厳密な不確実性定量化の欠如は、AI結果の信頼を損なう重要な要因である。
分布自由不確実性定量化の最近の進歩は、これらの問題に対する実用的な解決策である。
本稿では, 正しい狭窄の重症度を含むことが保証される順序予測セットを形成する手法を実証する。
論文 参考訳(メタデータ) (2022-07-05T18:01:20Z) - Uncertainty-Informed Deep Learning Models Enable High-Confidence
Predictions for Digital Histopathology [40.96261204117952]
肺腺癌と扁平上皮癌を鑑別するモデルを訓練し,高い信頼度予測がUQなしで予測を上回ることを示す。
非肺癌コホートに対する腺癌と扁平上皮癌との高信頼度予測を精度良く行うことで, 領域シフトの設定においてUQ閾値の信頼性が保たれることを示す。
論文 参考訳(メタデータ) (2022-04-09T17:35:37Z) - Uncertainty-Aware Training for Cardiac Resynchronisation Therapy
Response Prediction [3.090173647095682]
予測の不確実性の定量化は、そのような解釈可能性を提供し、信頼を促進する1つの方法である。
心臓磁気共鳴画像からの心再同期治療応答予測のためのDLモデルのデータ(アラート的)とモデル(緊急的)の不確かさを定量化する。
我々は、既存のDL画像に基づく分類モデルを再訓練し、正しい予測の信頼性を高めるために使用できる不確実性認識損失関数を予備検討する。
論文 参考訳(メタデータ) (2021-09-22T10:37:50Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Uncertainty estimation for classification and risk prediction on medical
tabular data [0.0]
本研究は,医療データの分類とリスク予測のための不確実性推定の理解を深めるものである。
医療などのデータ共有分野において、モデルの予測の不確実性を測定する能力は、意思決定支援ツールの改善につながる可能性がある。
論文 参考訳(メタデータ) (2020-04-13T08:46:41Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。