FILM: Framework for Imbalanced Learning Machines based on a new unbiased performance measure and a new ensemble-based technique
- URL: http://arxiv.org/abs/2503.04370v1
- Date: Thu, 06 Mar 2025 12:15:56 GMT
- Title: FILM: Framework for Imbalanced Learning Machines based on a new unbiased performance measure and a new ensemble-based technique
- Authors: Antonio Guillén-Teruel, Marcos Caracena, Jose A. Pardo, Fernando de-la-Gándara, José Palma, Juan A. Botía,
- Abstract summary: This research addresses the challenges of handling unbalanced datasets for binary classification tasks.<n>Standard evaluation metrics are often biased by the disproportionate representation of the minority class.<n>We propose a novel metric, the Unbiased Integration Coefficients, which exhibits significantly reduced bias.
- Score: 37.94431794242543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research addresses the challenges of handling unbalanced datasets for binary classification tasks. In such scenarios, standard evaluation metrics are often biased by the disproportionate representation of the minority class. Conducting experiments across seven datasets, we uncovered inconsistencies in evaluation metrics when determining the model that outperforms others for each binary classification problem. This justifies the need for a metric that provides a more consistent and unbiased evaluation across unbalanced datasets, thereby supporting robust model selection. To mitigate this problem, we propose a novel metric, the Unbiased Integration Coefficients (UIC), which exhibits significantly reduced bias ($p < 10^{-4}$) towards the minority class compared to conventional metrics. The UIC is constructed by aggregating existing metrics while penalising those more prone to imbalance. In addition, we introduce the Identical Partitions for Imbalance Problems (IPIP) algorithm for imbalanced ML problems, an ensemble-based approach. Our experimental results show that IPIP outperforms other baseline imbalance-aware approaches using Random Forest and Logistic Regression models in three out of seven datasets as assessed by the UIC metric, demonstrating its effectiveness in addressing imbalanced data challenges in binary classification tasks. This new framework for dealing with imbalanced datasets is materialized in the FILM (Framework for Imbalanced Learning Machines) R Package, accessible at https://github.com/antoniogt/FILM.
Related papers
- Synthetic Tabular Data Generation for Class Imbalance and Fairness: A Comparative Study [4.420073761023326]
Due to their data-driven nature, Machine Learning (ML) models are susceptible to bias inherited from data.
Class imbalance (in the classification target) and group imbalance (in protected attributes like sex or race) can undermine both ML utility and fairness.
This paper conducts a comparative analysis to address class and group imbalances using state-of-the-art models.
arXiv Detail & Related papers (2024-09-08T20:08:09Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Generalized Oversampling for Learning from Imbalanced datasets and
Associated Theory [0.0]
In supervised learning, it is quite frequent to be confronted with real imbalanced datasets.
We propose a data augmentation procedure, the GOLIATH algorithm, based on kernel density estimates.
We evaluate the performance of the GOLIATH algorithm in imbalanced regression situations.
arXiv Detail & Related papers (2023-08-05T23:08:08Z) - Graph Embedded Intuitionistic Fuzzy Random Vector Functional Link Neural
Network for Class Imbalance Learning [4.069144210024564]
We propose a graph embedded intuitionistic fuzzy RVFL for class imbalance learning (GE-IFRVFL-CIL) model incorporating a weighting mechanism to handle imbalanced datasets.
The proposed GE-IFRVFL-CIL model offers a promising solution to address the class imbalance issue, mitigates the detrimental effect of noise and outliers, and preserves the inherent geometrical structures of the dataset.
arXiv Detail & Related papers (2023-07-15T20:45:45Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
A corpus of metrics is designed for measuring the accuracy, robustness, and bounds of algorithms for learning with long-tailed distribution.
Based on our benchmarks, we re-evaluate the performance of existing methods on CIFAR10 and CIFAR100 datasets.
arXiv Detail & Related papers (2023-02-03T02:40:54Z) - Class-Imbalanced Complementary-Label Learning via Weighted Loss [8.934943507699131]
Complementary-label learning (CLL) is widely used in weakly supervised classification.
It faces a significant challenge in real-world datasets when confronted with class-imbalanced training samples.
We propose a novel problem setting that enables learning from class-imbalanced complementary labels for multi-class classification.
arXiv Detail & Related papers (2022-09-28T16:02:42Z) - Effective Class-Imbalance learning based on SMOTE and Convolutional
Neural Networks [0.1074267520911262]
Imbalanced Data (ID) is a problem that deters Machine Learning (ML) models for achieving satisfactory results.
In this paper, we investigate the effectiveness of methods based on Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs)
In order to achieve reliable results, we conducted our experiments 100 times with randomly shuffled data distributions.
arXiv Detail & Related papers (2022-09-01T07:42:16Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Label-Imbalanced and Group-Sensitive Classification under
Overparameterization [32.923780772605596]
Label-imbalanced and group-sensitive classification seeks to appropriately modify standard training algorithms to optimize relevant metrics.
We show that a logit-adjusted loss modification to standard empirical risk minimization might be ineffective in general.
We show that our results extend naturally to binary classification with sensitive groups, thus treating the two common types of imbalances (label/group) in a unifying way.
arXiv Detail & Related papers (2021-03-02T08:09:43Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
We propose an ensemble of class-balanced experts that combines the strength of diverse classifiers.
Our ensemble of class-balanced experts reaches results close to state-of-the-art and an extended ensemble establishes a new state-of-the-art on two benchmarks for long-tailed recognition.
arXiv Detail & Related papers (2020-04-07T20:57:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.