Universality of Layer-Level Entropy-Weighted Quantization Beyond Model Architecture and Size
- URL: http://arxiv.org/abs/2503.04704v2
- Date: Fri, 07 Mar 2025 15:12:57 GMT
- Title: Universality of Layer-Level Entropy-Weighted Quantization Beyond Model Architecture and Size
- Authors: Alireza Behtash, Marijan Fofonjka, Ethan Baird, Tyler Mauer, Hossein Moghimifam, David Stout, Joel Dennison,
- Abstract summary: We present a novel approach to selective model quantization using Entropy-Weighted Quantization (EWQ)<n>EWQ determines which blocks can be safely quantized without causing significant performance degradation, independent of model architecture or size.<n>Our method outperforms uniform quantization approaches, maintaining Massive Multitask Language Understanding (MMLU) accuracy scores within 0.5% of unquantized models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel approach to selective model quantization that transcends the limitations of architecture-specific and size-dependent compression methods for Large Language Models (LLMs) using Entropy-Weighted Quantization (EWQ). By analyzing the entropy distribution across transformer blocks, EWQ determines which blocks can be safely quantized without causing significant performance degradation, independent of model architecture or size. Our method outperforms uniform quantization approaches, maintaining Massive Multitask Language Understanding (MMLU) accuracy scores within 0.5% of unquantized models while reducing memory usage by up to 18%. We demonstrate the effectiveness of EWQ across multiple architectures -- from 1.6B to 70B parameters -- and showcase consistent improvements in the quality-compression trade-off regardless of model scale or architectural design. A surprising finding of EWQ is its ability to reduce perplexity compared to unquantized models, suggesting the presence of beneficial regularization through selective precision reduction. This improvement holds across different model families, indicating a fundamental relationship between layer-level entropy and optimal precision requirements. Additionally, we introduce FastEWQ, a rapid method for entropy distribution analysis that eliminates the need for loading model weights. This technique leverages universal characteristics of entropy distribution that persist across various architectures and scales, enabling near-instantaneous quantization decisions while maintaining 80% classification accuracy with full entropy analysis. Our results demonstrate that effective quantization strategies can be developed independently of specific architectural choices or model sizes, opening new possibilities for efficient LLM deployment.
Related papers
- Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment.
We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes.
arXiv Detail & Related papers (2025-03-31T10:16:03Z) - MoQa: Rethinking MoE Quantization with Multi-stage Data-model Distribution Awareness [12.059149430757863]
Mix-of-Experts (MoE) has become the main form of Large Language Models (LLMs)
MoQa decouples the data-model distribution complexity of MoEs in multiple analysis stages.
Experiments show that MoQa achieves a 1.692.18 perplexity decrease in language modeling tasks and a 1.58%8.91% accuracy improvement in zero-shot inference tasks.
arXiv Detail & Related papers (2025-03-27T03:52:25Z) - QPruner: Probabilistic Decision Quantization for Structured Pruning in Large Language Models [3.093903491123962]
Large language models (LLMs) have significantly advanced various natural language processing (NLP) tasks.<n> structured pruning is an effective approach to reducing model size, but it often results in significant accuracy degradation.<n>We introduce quantization into the structured pruning framework to reduce memory consumption during both fine-tuning and inference.<n>We propose QPruner, a novel framework that employs structured pruning to reduce model size, followed by a layer-wise mixed-precision quantization scheme.
arXiv Detail & Related papers (2024-12-16T10:14:01Z) - Q-VLM: Post-training Quantization for Large Vision-Language Models [73.19871905102545]
We propose a post-training quantization framework of large vision-language models (LVLMs) for efficient multi-modal inference.<n>We mine the cross-layer dependency that significantly influences discretization errors of the entire vision-language model, and embed this dependency into optimal quantization strategy.<n> Experimental results demonstrate that our method compresses the memory by 2.78x and increase generate speed by 1.44x about 13B LLaVA model without performance degradation.
arXiv Detail & Related papers (2024-10-10T17:02:48Z) - Data-free Weight Compress and Denoise for Large Language Models [96.68582094536032]
We propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices.<n>We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data.
arXiv Detail & Related papers (2024-02-26T05:51:47Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Augmenting Hessians with Inter-Layer Dependencies for Mixed-Precision
Post-Training Quantization [7.392278887917975]
We propose a mixed-precision post training quantization approach that assigns different numerical precisions to tensors in a network based on their specific needs.
Our experiments demonstrate latency reductions compared to a 16-bit baseline of $25.48%$, $21.69%$, and $33.28%$ respectively.
arXiv Detail & Related papers (2023-06-08T02:18:58Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - QuantNAS for super resolution: searching for efficient
quantization-friendly architectures against quantization noise [19.897685398009912]
We propose a novel quantization-aware procedure, the QuantNAS.
We use entropy regularization, quantization noise, and Adaptive Deviation for Quantization (ADQ) module to enhance the search procedure.
The proposed procedure is 30% faster than direct weight quantization and is more stable.
arXiv Detail & Related papers (2022-08-31T13:12:16Z) - AMED: Automatic Mixed-Precision Quantization for Edge Devices [3.5223695602582614]
Quantized neural networks are well known for reducing the latency, power consumption, and model size without significant harm to the performance.
Mixed-precision quantization offers better utilization of customized hardware that supports arithmetic operations at different bitwidths.
arXiv Detail & Related papers (2022-05-30T21:23:22Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
We propose a new and effective data-free quantization method termed ClusterQ.
To obtain high inter-class separability of semantic features, we cluster and align the feature distribution statistics.
We also incorporate the intra-class variance to solve class-wise mode collapse.
arXiv Detail & Related papers (2022-04-30T06:58:56Z) - HEMP: High-order Entropy Minimization for neural network comPression [20.448617917261874]
We formulate the entropy of a quantized artificial neural network as a differentiable function that can be plugged as a regularization term into the cost function minimized by descent.
We show that HEMP is able to work in synergy with other approaches aiming at pruning or quantizing the model itself, delivering significant benefits in terms of storage size compressibility without harming the model's performance.
arXiv Detail & Related papers (2021-07-12T10:17:53Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.