論文の概要: Sample-Optimal Agnostic Boosting with Unlabeled Data
- arxiv url: http://arxiv.org/abs/2503.04706v1
- Date: Thu, 06 Mar 2025 18:54:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:01:26.611813
- Title: Sample-Optimal Agnostic Boosting with Unlabeled Data
- Title(参考訳): ラベルなしデータによるサンプル最適Agnostic Boosting
- Authors: Udaya Ghai, Karan Singh,
- Abstract要約: Boostingは、親指の不正確なルールから正確な学習アルゴリズムを構築するためのフレームワークを提供する。
本稿は、予期せぬ、これまで探索されなかった改善の道である未ラベルのサンプルを取り上げる。
我々は、最もよく知られたブースティングアルゴリズムにおいて、必要となるサンプルの総数は、ラベル付きおよびラベル付きで、それ以上ではないことを示した。
- 参考スコア(独自算出の注目度): 19.15484761265653
- License:
- Abstract: Boosting provides a practical and provably effective framework for constructing accurate learning algorithms from inaccurate rules of thumb. It extends the promise of sample-efficient learning to settings where direct Empirical Risk Minimization (ERM) may not be implementable efficiently. In the realizable setting, boosting is known to offer this computational reprieve without compromising on sample efficiency. However, in the agnostic case, existing boosting algorithms fall short of achieving the optimal sample complexity. This paper highlights an unexpected and previously unexplored avenue of improvement: unlabeled samples. We design a computationally efficient agnostic boosting algorithm that matches the sample complexity of ERM, given polynomially many additional unlabeled samples. In fact, we show that the total number of samples needed, unlabeled and labeled inclusive, is never more than that for the best known agnostic boosting algorithm -- so this result is never worse -- while only a vanishing fraction of these need to be labeled for the algorithm to succeed. This is particularly fortuitous for learning-theoretic applications of agnostic boosting, which often take place in the distribution-specific setting, where unlabeled samples can be availed for free. We detail other applications of this result in reinforcement learning.
- Abstract(参考訳): ブースティングは、親指の不正確な規則から正確な学習アルゴリズムを構築するための実用的で実証可能な効果的なフレームワークを提供する。
サンプル効率のよい学習の約束を、直接的経験的リスク最小化(ERM)が効率的に実装できないような設定に拡張する。
実現可能な設定では、ブースティングはサンプル効率を損なうことなく、この計算レリーブを提供することが知られている。
しかし、非依存の場合、既存のブースティングアルゴリズムは最適なサンプル複雑性を達成するには不十分である。
本稿は、予期せぬ、これまで探索されなかった改善の道である未ラベルのサンプルを取り上げる。
我々は、多項式的に多くの未ラベルサンプルを与えられた ERM のサンプル複雑性と一致する計算効率の良い非依存的ブースティングアルゴリズムを設計する。
実際、必要となるサンプルの総数は、ラベルを付けず、包括的にラベル付けされているため、最もよく知られた無知なブースティングアルゴリズムでは、それ以上ではないことが示されています。
これはアグノスティック・ブーピングの学習論的応用において特に有益であり、多くの場合、未ラベルのサンプルを無償で利用することができる分布特異的な設定で行われる。
強化学習におけるこの結果の他の応用について詳述する。
関連論文リスト
- Sample-Efficient Agnostic Boosting [19.15484761265653]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、既知のすべてのブースティングアルゴリズムよりも4次的に標本効率が高いという、不可知的なブースティング手法を超越している。
アルゴリズムの重要な特徴は、一様収束引数のブラックボックスアプリケーションで得られるものよりも厳密な一般化誤差を保証しつつ、複数ラウンドのブースティングのサンプルを再利用する能力を活用することである。
論文 参考訳(メタデータ) (2024-10-31T04:50:29Z) - The Many Faces of Optimal Weak-to-Strong Learning [10.985323882432086]
提案手法は, サンプルの複雑さを証明し得る, 驚くほど単純なブースティングアルゴリズムである。
我々のパイロット実験研究は、我々の新しいアルゴリズムが大規模なデータセットで以前のアルゴリズムより優れていることを示唆している。
論文 参考訳(メタデータ) (2024-08-30T09:38:51Z) - When Analytic Calculus Cracks AdaBoost Code [0.30693357740321775]
本研究では,Scikit-Lernで実装されたAdaBoostプロシージャを (2クラス) 解析する。
AdaBoostは名前のみのアルゴリズムであり、結果の弱い分類器の組み合わせは真理表を使って明示的に計算できる。
我々は,この式がリスクの最小点を与えていないことを観察し,最小点を求めるシステムを提供し,Freund と Schapire が記述したアルゴリズムを実装していないことを確かめる。
論文 参考訳(メタデータ) (2023-08-02T10:37:25Z) - ProBoost: a Boosting Method for Probabilistic Classifiers [55.970609838687864]
ProBoostは確率的分類器のための新しいブースティングアルゴリズムである。
各トレーニングサンプルの不確実性を使用して、最も困難で不確実なものを決定する。
これは、最も不確実性が高いと判明したサンプルに徐々に焦点をあてる配列を生成する。
論文 参考訳(メタデータ) (2022-09-04T12:49:20Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
不均衡学習はデータマイニングにおいて基本的な課題であり、各クラスにトレーニングサンプルの不均等な比率が存在する。
オーバーサンプリングは、少数民族のための合成サンプルを生成することによって、不均衡な学習に取り組む効果的な手法である。
我々は,異なるレベルの意思決定を共同で最適化できる自動オーバーサンプリングアルゴリズムであるAutoSMOTEを提案する。
論文 参考訳(メタデータ) (2022-08-26T04:28:01Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
我々は、ラベルのない例を使ってモデルをトレーニングする半教師付き学習(SSL)アプローチを提案する。
提案手法であるDashは、ラベルなしデータ選択の観点から適応性を享受する。
論文 参考訳(メタデータ) (2021-09-01T23:52:29Z) - Improved Algorithms for Agnostic Pool-based Active Classification [20.12178157010804]
プールに依存しない環境でのバイナリ分類のためのアクティブラーニングを検討する。
我々のアルゴリズムは、画像分類データセットにおけるアートアクティブな学習アルゴリズムの状況よりも優れている。
論文 参考訳(メタデータ) (2021-05-13T18:24:30Z) - Iterative Weak Learnability and Multi-Class AdaBoost [0.0]
SAMMEに触発されたマルチクラス分類問題に対する効率的なアンサンブルアルゴリズムを構築する。
SAMMEとは対照的に、アルゴリズムの最終仮説は確率1の正しいラベルに収束する。
サンプルサイズのみに依存する訓練誤差と追加項の和は,適応ブースティングアルゴリズムとしてアルゴリズムの一般化誤差を限定する。
論文 参考訳(メタデータ) (2021-01-26T03:30:30Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration [143.43658264904863]
我々は、最小二乗値スタイルのアルゴリズムで一般的に使用される、より標準的なベルマン誤差の概念の下での反復が、ほぼ最適値関数の学習において強力なPAC保証を提供することを示す。
そこで本稿では,任意の(線形な)報酬関数に対して,最適に近いポリシーを学習するためにどのように使用できるかを示す。
論文 参考訳(メタデータ) (2020-08-18T04:34:21Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。