論文の概要: Iterative Weak Learnability and Multi-Class AdaBoost
- arxiv url: http://arxiv.org/abs/2101.10542v1
- Date: Tue, 26 Jan 2021 03:30:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 20:03:33.647902
- Title: Iterative Weak Learnability and Multi-Class AdaBoost
- Title(参考訳): 反復弱学習性とマルチクラスAdaBoost
- Authors: In-Koo Cho and Jonathan Libgober
- Abstract要約: SAMMEに触発されたマルチクラス分類問題に対する効率的なアンサンブルアルゴリズムを構築する。
SAMMEとは対照的に、アルゴリズムの最終仮説は確率1の正しいラベルに収束する。
サンプルサイズのみに依存する訓練誤差と追加項の和は,適応ブースティングアルゴリズムとしてアルゴリズムの一般化誤差を限定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We construct an efficient recursive ensemble algorithm for the multi-class
classification problem, inspired by SAMME (Zhu, Zou, Rosset, and Hastie
(2009)). We strengthen the weak learnability condition in Zhu, Zou, Rosset, and
Hastie (2009) by requiring that the weak learnability condition holds for any
subset of labels with at least two elements. This condition is simpler to check
than many proposed alternatives (e.g., Mukherjee and Schapire (2013)). As
SAMME, our algorithm is reduced to the Adaptive Boosting algorithm (Schapire
and Freund (2012)) if the number of labels is two, and can be motivated as a
functional version of the steepest descending method to find an optimal
solution. In contrast to SAMME, our algorithm's final hypothesis converges to
the correct label with probability 1. For any number of labels, the probability
of misclassification vanishes exponentially as the training period increases.
The sum of the training error and an additional term, that depends only on the
sample size, bounds the generalization error of our algorithm as the Adaptive
Boosting algorithm.
- Abstract(参考訳): SAMME (Zhu, Zou, Rosset, Hastie (2009)) に着想を得た多クラス分類問題に対する効率的な再帰的アンサンブルアルゴリズムを構築した。
zhu,zou,rosset,hastie(2009)の弱い学習可能性条件は,少なくとも2つの要素を持つラベルのサブセットに対して弱い学習可能性条件が保持されることを要求することにより強化される。
この条件は多くの代替案(例: mukherjee and schapire (2013))よりも簡単にチェックできる。
SAMMEとして、ラベルの数が2つの場合、アルゴリズムはAdaptive Boostingアルゴリズム(Schapire and Freund (2012))に還元され、最適なソリューションを見つけるために最も急な下降方法の機能バージョンとして動機付けることができます。
SAMMEとは対照的に、アルゴリズムの最終仮説は確率1の正しいラベルに収束する。
任意のラベルに対して、トレーニング期間が増加するにつれて誤分類の確率は指数関数的に減少する。
サンプルサイズのみに依存する訓練誤差と追加項の和は,適応ブースティングアルゴリズムとしてアルゴリズムの一般化誤差を限定する。
関連論文リスト
- Semisupervised score based matching algorithm to evaluate the effect of public health interventions [3.221788913179251]
1対1のマッチングアルゴリズムでは、マッチする多数の"ペア"は、大きなサンプルからの情報と多数のタスクの両方を意味する可能性がある。
本稿では,2次スコア関数 $S_beta(x_i,x_j)= betaT (x_i-x_j)(x_i-x_j)T beta$ に基づく新しい1対1マッチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-19T02:24:16Z) - On Universally Optimal Algorithms for A/B Testing [49.429419538826444]
ベルヌーイ報奨を伴う多腕バンディットにおける固定予算によるベストアーム識別の問題について検討する。
A/Bテスト問題としても知られる2つのアームの問題に対して,各アームを等しくサンプリングするアルゴリズムが存在しないことを証明した。
論文 参考訳(メタデータ) (2023-08-23T08:38:53Z) - Shrinking Class Space for Enhanced Certainty in Semi-Supervised Learning [59.44422468242455]
そこで我々はShrinkMatchと呼ばれる新しい手法を提案し、不確実なサンプルを学習する。
それぞれの不確実なサンプルに対して、元の Top-1 クラスを単に含むスランク類空間を適応的に求める。
次に、スランク空間における強と弱に強化された2つのサンプル間の整合正則化を課し、識別的表現を試みます。
論文 参考訳(メタデータ) (2023-08-13T14:05:24Z) - Agnostic Multi-Robust Learning Using ERM [19.313739782029185]
頑健な学習における根本的な問題は非対称性である: 学習者は指数関数的に多くの摂動の全てを正しく分類する必要がある。
これとは対照的に、攻撃者は1つの摂動を成功させる必要がある。
本稿では,新しいマルチグループ設定を導入し,新しいマルチロバスト学習問題を提案する。
論文 参考訳(メタデータ) (2023-03-15T21:30:14Z) - RLAS-BIABC: A Reinforcement Learning-Based Answer Selection Using the
BERT Model Boosted by an Improved ABC Algorithm [6.82469220191368]
回答選択(AS)は、オープンドメイン質問応答(QA)問題の重要なサブタスクである。
本稿では、注意機構に基づく長短期メモリ(LSTM)と、変換器(BERT)ワード埋め込みによる双方向エンコーダ表現に基づいて、ASのためのRLAS-BIABCと呼ばれる手法を提案する。
論文 参考訳(メタデータ) (2023-01-07T08:33:05Z) - HARRIS: Hybrid Ranking and Regression Forests for Algorithm Selection [75.84584400866254]
両アプローチの強みを両アプローチの弱さを緩和しつつ組み合わせ, 特殊林を利用した新しいアルゴリズムセレクタを提案する。
HARRISの決定は、ハイブリッドランキングと回帰損失関数に基づいて最適化された木を作成する森林モデルに基づいている。
論文 参考訳(メタデータ) (2022-10-31T14:06:11Z) - A Single-Loop Gradient Descent and Perturbed Ascent Algorithm for
Nonconvex Functional Constrained Optimization [27.07082875330508]
制約のない不等式問題は、マルチクラスネイマンオラクルのような多くの機械学習問題をモデル化するために用いられる。
このような緩やかな規則性の条件下では、値損失の交互化と制約違反の低減のバランスをとることは困難である。
本稿では,新しい不等式制約問題アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-12T16:30:34Z) - Improved Algorithms for Agnostic Pool-based Active Classification [20.12178157010804]
プールに依存しない環境でのバイナリ分類のためのアクティブラーニングを検討する。
我々のアルゴリズムは、画像分類データセットにおけるアートアクティブな学習アルゴリズムの状況よりも優れている。
論文 参考訳(メタデータ) (2021-05-13T18:24:30Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
問題に対処するための新しいアルゴリズム - Momentum- Single-timescale Approximation (MSTSA) を提案する。
MSTSAでは、低いレベルのサブプロブレムに対する不正確な解決策のため、反復でエラーを制御することができます。
論文 参考訳(メタデータ) (2021-02-15T07:10:33Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。