論文の概要: Rethinking Few-Shot Medical Image Segmentation by SAM2: A Training-Free Framework with Augmentative Prompting and Dynamic Matching
- arxiv url: http://arxiv.org/abs/2503.04826v1
- Date: Wed, 05 Mar 2025 06:12:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:21:03.661823
- Title: Rethinking Few-Shot Medical Image Segmentation by SAM2: A Training-Free Framework with Augmentative Prompting and Dynamic Matching
- Title(参考訳): SAM2による医用画像の断片化再考: 強化プロンプトと動的マッチングによる学習自由フレームワーク
- Authors: Haiyue Zu, Jun Ge, Heting Xiao, Jile Xie, Zhangzhe Zhou, Yifan Meng, Jiayi Ni, Junjie Niu, Linlin Zhang, Li Ni, Huilin Yang,
- Abstract要約: 我々は,従来のスライス・バイ・スライス・パラダイムから離れて,3次元医用画像のボリュームをビデオシーケンスとして概念化する。
単一のラベル付きサポートイメージに対して広範なデータ拡張を行い、クエリボリュームの各フレームに対して、最も類似したサポートイメージをアルゴリズムで選択する。
ベンチマーク数ショットの医用画像セグメンテーションデータセットの最先端性能を実証し、精度とアノテーション効率を大幅に改善した。
- 参考スコア(独自算出の注目度): 4.1253497486581026
- License:
- Abstract: The reliance on large labeled datasets presents a significant challenge in medical image segmentation. Few-shot learning offers a potential solution, but existing methods often still require substantial training data. This paper proposes a novel approach that leverages the Segment Anything Model 2 (SAM2), a vision foundation model with strong video segmentation capabilities. We conceptualize 3D medical image volumes as video sequences, departing from the traditional slice-by-slice paradigm. Our core innovation is a support-query matching strategy: we perform extensive data augmentation on a single labeled support image and, for each frame in the query volume, algorithmically select the most analogous augmented support image. This selected image, along with its corresponding mask, is used as a mask prompt, driving SAM2's video segmentation. This approach entirely avoids model retraining or parameter updates. We demonstrate state-of-the-art performance on benchmark few-shot medical image segmentation datasets, achieving significant improvements in accuracy and annotation efficiency. This plug-and-play method offers a powerful and generalizable solution for 3D medical image segmentation.
- Abstract(参考訳): 大規模ラベル付きデータセットへの依存は、医用画像のセグメンテーションにおいて重要な課題である。
潜在的な解決策は少ないが、既存の手法では十分なトレーニングデータを必要とすることが多い。
本稿では,映像セグメンテーション能力の強い視覚基盤モデルであるSAM2(Seegment Anything Model 2)を活用する新しい手法を提案する。
我々は,従来のスライス・バイ・スライス・パラダイムから離れて,3次元医用画像のボリュームをビデオシーケンスとして概念化する。
単一のラベル付きサポートイメージに対して広範なデータ拡張を行い、クエリボリュームの各フレームに対して、最も類似した拡張サポートイメージをアルゴリズムで選択する。
この選択された画像は、対応するマスクと共にマスクプロンプトとして使用され、SAM2のビデオセグメンテーションを駆動する。
このアプローチは、モデルの再トレーニングやパラメータ更新を完全に回避する。
ベンチマーク数ショットの医用画像セグメンテーションデータセットの最先端性能を実証し、精度とアノテーション効率を大幅に改善した。
このプラグアンドプレイ方式は、3次元医用画像セグメンテーションのための強力で一般化可能なソリューションを提供する。
関連論文リスト
- Retrieval-augmented Few-shot Medical Image Segmentation with Foundation Models [17.461510586128874]
本稿では,DINOv2 と Segment Anything Model 2 を併用して,画像の検索を行う手法を提案する。
我々のアプローチでは、DINOv2の機能をクエリとして使用し、制限付きアノテートデータから類似したサンプルを検索し、それをメモリバンクにエンコードする。
論文 参考訳(メタデータ) (2024-08-16T15:48:07Z) - Rethinking Interactive Image Segmentation with Low Latency, High Quality, and Diverse Prompts [68.86537322287474]
多様なプロンプトを持つ低レイテンシで高品質な対話的セグメンテーションは、スペシャリストやジェネラリストモデルでは難しい。
我々は、低レイテンシ、高品質、多様なプロンプトサポートを提供する次世代インタラクティブセグメンテーションアプローチであるSegNextを提案する。
本手法は,HQSeg-44KとDAVISにおいて,定量的かつ定性的に,最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-03-31T17:02:24Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
単点プロンプトのみを用いたプロンプト駆動型3次元医用画像分割モデルProMISeを提案する。
今回,大腸癌と膵腫瘍の2つの領域に分布する2つのパブリックデータセットについて検討した。
論文 参考訳(メタデータ) (2023-10-30T16:49:03Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - Self-Sampling Meta SAM: Enhancing Few-shot Medical Image Segmentation
with Meta-Learning [17.386754270460273]
数ショットの医用画像分割のための自己サンプリングメタSAMフレームワークを提案する。
提案手法は,数発のセグメンテーションにおいて最先端の手法よりも大幅に向上する。
そこで本研究では,対話型画像分割における高速なオンライン適応手法を提案する。
論文 参考訳(メタデータ) (2023-08-31T05:20:48Z) - Self-Prompting Large Vision Models for Few-Shot Medical Image
Segmentation [14.135249795318591]
本稿では,医療ビジョン応用における自己プロンプトの新たな視点を提案する。
我々は、Segment Anything Modelの埋め込み空間を利用して、単純だが効果的な線形ピクセルワイド分類器を通して自身を誘導する。
複数のデータセットで競合する結果を得る。
論文 参考訳(メタデータ) (2023-08-15T08:20:07Z) - Few Shot Medical Image Segmentation with Cross Attention Transformer [30.54965157877615]
我々は、CAT-Netと呼ばれる、数ショットの医用画像セグメンテーションのための新しいフレームワークを提案する。
提案するネットワークは,サポート画像とクエリ画像の相関関係を抽出し,有用なフォアグラウンド情報のみに限定する。
提案手法を,Abd-CT,Abd-MRI,Card-MRIの3つの公開データセットで検証した。
論文 参考訳(メタデータ) (2023-03-24T09:10:14Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
相互参照機構により、我々のネットワークは2つの画像に共起する物体をよりよく見つけることができる。
PASCAL VOC 2012データセットの実験は、我々のネットワークが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2020-03-24T04:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。