Narrative Studio: Visual narrative exploration using LLMs and Monte Carlo Tree Search
- URL: http://arxiv.org/abs/2504.02426v1
- Date: Thu, 03 Apr 2025 09:31:07 GMT
- Title: Narrative Studio: Visual narrative exploration using LLMs and Monte Carlo Tree Search
- Authors: Parsa Ghaffari, Chris Hokamp,
- Abstract summary: We propose a novel in-browser narrative exploration environment featuring a tree-like interface.<n>Each branch is extended via iterative LLM inference guided by system and user-defined prompts.<n>We also allow users to enhance narrative coherence by grounding the generated text in an entity graph.
- Score: 1.795561427808824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interactive storytelling benefits from planning and exploring multiple 'what if' scenarios. Modern LLMs are useful tools for ideation and exploration, but current chat-based user interfaces restrict users to a single linear flow. To address this limitation, we propose Narrative Studio -- a novel in-browser narrative exploration environment featuring a tree-like interface that allows branching exploration from user-defined points in a story. Each branch is extended via iterative LLM inference guided by system and user-defined prompts. Additionally, we employ Monte Carlo Tree Search (MCTS) to automatically expand promising narrative paths based on user-specified criteria, enabling more diverse and robust story development. We also allow users to enhance narrative coherence by grounding the generated text in an entity graph that represents the actors and environment of the story.
Related papers
- RMTBench: Benchmarking LLMs Through Multi-Turn User-Centric Role-Playing [111.06936588273868]
RMTBench is a comprehensive textbfuser-centric bilingual role-playing benchmark featuring 80 diverse characters and over 8,000 dialogue rounds.<n>Our benchmark constructs dialogues based on explicit user motivations rather than character descriptions, ensuring alignment with practical user applications.<n>By shifting focus from character background to user intention fulfillment, RMTBench bridges the gap between academic evaluation and practical deployment requirements.
arXiv Detail & Related papers (2025-07-27T16:49:47Z) - Collaborative Storytelling and LLM: A Linguistic Analysis of Automatically-Generated Role-Playing Game Sessions [55.2480439325792]
Role-playing games (RPG) are games in which players interact with one another to create narratives.<n>This emerging form of shared narrative, primarily oral, is receiving increasing attention.<n>In this paper, we aim to discover to what extent the language of Large Language Models (LLMs) exhibit oral or written features when asked to generate an RPG session.
arXiv Detail & Related papers (2025-03-26T15:10:47Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
We propose a generation framework inspired by narrative theory that decomposes narrative writing into subtasks tackled by specialized agents.<n>We show that Agents' Room generates stories preferred by expert evaluators over those produced by baseline systems.
arXiv Detail & Related papers (2024-10-03T15:44:42Z) - Guiding and Diversifying LLM-Based Story Generation via Answer Set Programming [1.7889842797216124]
Large language models (LLMs) are capable of generating stories in response to open-ended user requests.
We propose using a higher-level and more abstract symbolic specification of high-level story structure to guide and diversify story generation.
arXiv Detail & Related papers (2024-06-01T21:14:25Z) - StoryVerse: Towards Co-authoring Dynamic Plot with LLM-based Character Simulation via Narrative Planning [8.851718319632973]
Large Language Models (LLMs) drive the behavior of virtual characters, allowing plots to emerge from interactions between characters and their environments.
We propose a novel plot creation workflow that mediates between a writer's authorial intent and the emergent behaviors from LLM-driven character simulation.
The process creates "living stories" that dynamically adapt to various game world states, resulting in narratives co-created by the author, character simulation, and player.
arXiv Detail & Related papers (2024-05-17T23:04:51Z) - LLM Attributor: Interactive Visual Attribution for LLM Generation [29.116016627864095]
Python library provides interactive visualizations for training data attribution of large language models.
Our library offers a new way to quickly attribute an LLM's text generation to training data points.
arXiv Detail & Related papers (2024-04-01T13:16:34Z) - User-LLM: Efficient LLM Contextualization with User Embeddings [23.226164112909643]
User-LLM is a novel framework that leverages user embeddings to directly contextualize large language models with user history interactions.
Our approach achieves significant efficiency gains by representing user timelines directly as embeddings, leading to substantial inference speedups of up to 78.1X.
arXiv Detail & Related papers (2024-02-21T08:03:27Z) - DoraemonGPT: Toward Understanding Dynamic Scenes with Large Language Models (Exemplified as A Video Agent) [73.10899129264375]
This paper explores DoraemonGPT, a comprehensive and conceptually elegant system driven by LLMs to understand dynamic scenes.<n>Given a video with a question/task, DoraemonGPT begins by converting the input video into a symbolic memory that stores task-related attributes.<n>We extensively evaluate DoraemonGPT's effectiveness on three benchmarks and several in-the-wild scenarios.
arXiv Detail & Related papers (2024-01-16T14:33:09Z) - GENEVA: GENErating and Visualizing branching narratives using LLMs [15.43734266732214]
textbfGENEVA, a prototype tool, generates a rich narrative graph with branching and reconverging storylines.
textbfGENEVA has the potential to assist in game development, simulations, and other applications with game-like properties.
arXiv Detail & Related papers (2023-11-15T18:55:45Z) - Walking Down the Memory Maze: Beyond Context Limit through Interactive
Reading [63.93888816206071]
We introduce MemWalker, a method that processes the long context into a tree of summary nodes. Upon receiving a query, the model navigates this tree in search of relevant information, and responds once it gathers sufficient information.
We show that, beyond effective reading, MemWalker enhances explainability by highlighting the reasoning steps as it interactively reads the text; pinpointing the relevant text segments related to the query.
arXiv Detail & Related papers (2023-10-08T06:18:14Z) - BuboGPT: Enabling Visual Grounding in Multi-Modal LLMs [101.50522135049198]
BuboGPT is a multi-modal LLM with visual grounding that can perform cross-modal interaction between vision, audio and language.
Our contributions are two-fold: 1) An off-the-shelf visual grounding module based on SAM that extracts entities in a sentence and find corresponding masks in the image.
Our experiments show that BuboGPT achieves impressive multi-modality understanding and visual grounding abilities during the interaction with human.
arXiv Detail & Related papers (2023-07-17T15:51:47Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
We propose a novel linguistic cue-based chain-of-thoughts (textitCue-CoT) to provide a more personalized and engaging response.
We build a benchmark with in-depth dialogue questions, consisting of 6 datasets in both Chinese and English.
Empirical results demonstrate our proposed textitCue-CoT method outperforms standard prompting methods in terms of both textithelpfulness and textitacceptability on all datasets.
arXiv Detail & Related papers (2023-05-19T16:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.