Narrative Context Protocol: An Open-Source Storytelling Framework for Generative AI
- URL: http://arxiv.org/abs/2503.04844v5
- Date: Mon, 28 Jul 2025 19:26:47 GMT
- Title: Narrative Context Protocol: An Open-Source Storytelling Framework for Generative AI
- Authors: Hank Gerba,
- Abstract summary: We introduce Narrative Context Protocol (NCP), an open-source narrative standard designed to enable narrative interoperability.<n>By encoding a story's structure in a "Storyform," NCP enables narrative portability across systems.<n>We demonstrate the capabilities of NCP through a year-long experiment, during which an author used NCP and a custom authoring platform to create a playable, text-based experience.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Here we introduce Narrative Context Protocol (NCP), an open-source narrative standard designed to enable narrative interoperability, AI-driven authoring tools, real-time emergent narratives, and more. By encoding a story's structure in a "Storyform," which is a structured register of its narrative features, NCP enables narrative portability across systems as well as intent-based constraints for generative storytelling systems. We demonstrate the capabilities of NCP through a year-long experiment, during which an author used NCP and a custom authoring platform to create a playable, text-based experience based on her pre-existing novella. This experience is driven by generative AI, with unconstrained natural language input. NCP functions as a set of "guardrails" that allows the generative system to accommodate player agency while also ensuring that narrative context and coherence are maintained.
Related papers
- STORYTELLER: An Enhanced Plot-Planning Framework for Coherent and Cohesive Story Generation [17.553025200797986]
We introduce Storyteller, a novel approach that systemically improves the coherence and consistency of automatically generated stories.<n>In experiments, Storyteller significantly outperforms existing approaches, achieving an 84.33% average win rate.<n>At the same time, it is also far ahead in other aspects including creativity, coherence, engagement, and relevance.
arXiv Detail & Related papers (2025-06-03T00:54:00Z) - STORYANCHORS: Generating Consistent Multi-Scene Story Frames for Long-Form Narratives [82.19488717416351]
This paper introduces StoryAnchors, a unified framework for generating high-quality, multi-scene story frames.<n>StoryAnchors employs a bidirectional story generator that integrates both past and future contexts to ensure temporal consistency.<n>It also integrates Multi-Event Story Frame Labeling and Progressive Story Frame Training, enabling the model to capture both overarching narrative flow and event-level dynamics.
arXiv Detail & Related papers (2025-05-13T08:48:10Z) - Narrative Studio: Visual narrative exploration using LLMs and Monte Carlo Tree Search [1.795561427808824]
We propose a novel in-browser narrative exploration environment featuring a tree-like interface.<n>Each branch is extended via iterative LLM inference guided by system and user-defined prompts.<n>We also allow users to enhance narrative coherence by grounding the generated text in an entity graph.
arXiv Detail & Related papers (2025-04-03T09:31:07Z) - MM-StoryAgent: Immersive Narrated Storybook Video Generation with a Multi-Agent Paradigm across Text, Image and Audio [48.820808691986805]
MM-StoryAgent creates immersive narrated video storybooks with refined plots, role-consistent images, and multi-channel audio.<n>The framework enhances story attractiveness through a multi-stage writing pipeline.<n> MM-StoryAgent offers a flexible, open-source platform for further development.
arXiv Detail & Related papers (2025-03-07T08:53:10Z) - WhatELSE: Shaping Narrative Spaces at Configurable Level of Abstraction for AI-bridged Interactive Storytelling [11.210282687859534]
WhatELSE is an AI-bridged IN authoring system that creates narrative possibility spaces from example stories.<n>We show that WhatELSE enables authors to perceive and edit the narrative space and generates engaging interactive narratives at play-time.
arXiv Detail & Related papers (2025-02-25T21:02:15Z) - StoryAgent: Customized Storytelling Video Generation via Multi-Agent Collaboration [88.94832383850533]
We propose a multi-agent framework designed for Customized Storytelling Video Generation (CSVG)
StoryAgent decomposes CSVG into distinct subtasks assigned to specialized agents, mirroring the professional production process.
Specifically, we introduce a customized Image-to-Video (I2V) method, LoRA-BE, to enhance intra-shot temporal consistency.
Our contributions include the introduction of StoryAgent, a versatile framework for video generation tasks, and novel techniques for preserving protagonist consistency.
arXiv Detail & Related papers (2024-11-07T18:00:33Z) - Crafting Narrative Closures: Zero-Shot Learning with SSM Mamba for Short Story Ending Generation [0.0]
Authors encounter moments of creative block, where the path forward in their narrative becomes obscured.
This paper is designed to address such moments by providing an innovative solution: A tool that completes stories based on given prompts.
By inputting a short story prompt, users can receive a conclusion to their story, articulated in one sentence or more, thereby enhancing the storytelling process with AI-driven creativity.
arXiv Detail & Related papers (2024-10-04T18:56:32Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
We propose a generation framework inspired by narrative theory that decomposes narrative writing into subtasks tackled by specialized agents.
We show that Agents' Room generates stories preferred by expert evaluators over those produced by baseline systems.
arXiv Detail & Related papers (2024-10-03T15:44:42Z) - Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
We present the first model capable of predicting visual stories with consistently grounded and coreferent character mentions.<n>Our model is finetuned on a new dataset which we build on top of the widely used VIST benchmark.<n>We also propose new evaluation metrics to measure the richness of characters and coreference in stories.
arXiv Detail & Related papers (2024-09-20T14:56:33Z) - ContextualStory: Consistent Visual Storytelling with Spatially-Enhanced and Storyline Context [50.572907418430155]
ContextualStory is a framework designed to generate coherent story frames and extend frames for visual storytelling.<n>We introduce a Storyline Contextualizer to enrich context in storyline embedding, and a StoryFlow Adapter to measure scene changes between frames.<n>Experiments on PororoSV and FlintstonesSV datasets demonstrate that ContextualStory significantly outperforms existing SOTA methods in both story visualization and continuation.
arXiv Detail & Related papers (2024-07-13T05:02:42Z) - SARD: A Human-AI Collaborative Story Generation [0.0]
We propose SARD, a drag-and-drop visual interface for generating a multi-chapter story using large language models.
Our evaluation of the usability of SARD and its creativity support shows that while node-based visualization of the narrative may help writers build a mental model, it exerts unnecessary mental overhead to the writer.
We also found that AI generates stories that are less lexically diverse, irrespective of the complexity of the story.
arXiv Detail & Related papers (2024-03-03T17:48:42Z) - SCStory: Self-supervised and Continual Online Story Discovery [53.72745249384159]
SCStory helps people digest rapidly published news article streams in real-time without human annotations.
SCStory employs self-supervised and continual learning with a novel idea of story-indicative adaptive modeling of news article streams.
arXiv Detail & Related papers (2023-11-27T04:50:01Z) - NarrativePlay: Interactive Narrative Understanding [27.440721435864194]
We introduce NarrativePlay, a novel system that allows users to role-play a fictional character and interact with other characters in narratives in an immersive environment.
We leverage Large Language Models (LLMs) to generate human-like responses, guided by personality traits extracted from narratives.
NarrativePlay has been evaluated on two types of narratives, detective and adventure stories, where users can either explore the world or improve their favorability with the narrative characters through conversations.
arXiv Detail & Related papers (2023-10-02T13:24:00Z) - Generating Coherent Narratives by Learning Dynamic and Discrete Entity
States with a Contrastive Framework [68.1678127433077]
We extend the Transformer model to dynamically conduct entity state updates and sentence realization for narrative generation.
Experiments on two narrative datasets show that our model can generate more coherent and diverse narratives than strong baselines.
arXiv Detail & Related papers (2022-08-08T09:02:19Z) - Guiding Neural Story Generation with Reader Models [5.935317028008691]
We introduce Story generation with Reader Models (StoRM), a framework in which a reader model is used to reason about the story should progress.
Experiments show that our model produces significantly more coherent and on-topic stories, outperforming baselines in dimensions including plot plausibility and staying on topic.
arXiv Detail & Related papers (2021-12-16T03:44:01Z) - Inferring the Reader: Guiding Automated Story Generation with
Commonsense Reasoning [12.264880519328353]
We introduce Commonsense-inference Augmented neural StoryTelling (CAST), a framework for introducing commonsense reasoning into the generation process.
We find that our CAST method produces significantly more coherent, on-topic, enjoyable and fluent stories than existing models in both the single-character and two-character settings.
arXiv Detail & Related papers (2021-05-04T06:40:33Z) - Cue Me In: Content-Inducing Approaches to Interactive Story Generation [74.09575609958743]
We focus on the task of interactive story generation, where the user provides the model mid-level sentence abstractions.
We present two content-inducing approaches to effectively incorporate this additional information.
Experimental results from both automatic and human evaluations show that these methods produce more topically coherent and personalized stories.
arXiv Detail & Related papers (2020-10-20T00:36:15Z) - Narrative Interpolation for Generating and Understanding Stories [52.463747140762145]
We propose a method for controlled narrative/story generation where we are able to guide the model to produce coherent narratives with user-specified target endings.
The core of our method is an incrementally model based on GPT-2 which conditions on a previous sentence and a next sentence in a narrative and fills in the gap.
We show that ending-guided generation results in narratives which are coherent, faithful to the given ending guide, and require less manual effort on the part of the human guide writer than past approaches.
arXiv Detail & Related papers (2020-08-17T16:45:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.