論文の概要: Memory Is All You Need: Testing How Model Memory Affects LLM Performance in Annotation Tasks
- arxiv url: http://arxiv.org/abs/2503.04874v1
- Date: Thu, 06 Mar 2025 16:39:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:24:11.663145
- Title: Memory Is All You Need: Testing How Model Memory Affects LLM Performance in Annotation Tasks
- Title(参考訳): モデルメモリがアノテーションタスクのLLMパフォーマンスにどのように影響するかをテストする
- Authors: Joan C. Timoneda, Sebastián Vallejo Vera,
- Abstract要約: モデルが以前の分類情報を保持できるようにすることで、性能が大幅に向上することを示します。
モデル記憶と強化学習を組み合わせた新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Generative Large Language Models (LLMs) have shown promising results in text annotation using zero-shot and few-shot learning. Yet these approaches do not allow the model to retain information from previous annotations, making each response independent from the preceding ones. This raises the question of whether model memory -- the LLM having knowledge about its own previous annotations in the same task -- affects performance. In this article, using OpenAI's GPT-4o and Meta's Llama 3.1 on two political science datasets, we demonstrate that allowing the model to retain information about its own previous classifications yields significant performance improvements: between 5 and 25\% when compared to zero-shot and few-shot learning. Moreover, memory reinforcement, a novel approach we propose that combines model memory and reinforcement learning, yields additional performance gains in three out of our four tests. These findings have important implications for applied researchers looking to improve performance and efficiency in LLM annotation tasks.
- Abstract(参考訳): Generative Large Language Models (LLMs) はゼロショットと少数ショット学習を用いたテキストアノテーションの有望な結果を示している。
しかし、これらのアプローチは、モデルが以前のアノテーションから情報を保持することを許さず、それぞれのレスポンスを前のアノテーションから独立させます。
これにより、モデルメモリ(LLMが自身の以前のアノテーションを同じタスクで知っている)がパフォーマンスに影響するかどうかという疑問が持ち上がる。
本稿では,OpenAI の GPT-4o と Meta の Llama 3.1 を2つの政治科学データセット上で使用することにより,従来の分類情報を保持することによって,ゼロショットや少数ショット学習と比較して 5 ~ 25 % の大幅なパフォーマンス向上が得られることを示す。
さらに、モデルメモリと強化学習を組み合わせた新しい手法であるメモリ強化は、4つのテストのうち3つでさらなる性能向上をもたらす。
これらの知見は、LLMアノテーションタスクの性能と効率を向上させるために応用研究者にとって重要な意味を持つ。
関連論文リスト
- SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models [88.29990536278167]
SPaRは、木探索の自己制限を統合したセルフプレイフレームワークで、気を散らさずに有効かつ同等の選好ペアを得る。
実験により,SPaRで誘導された3回の反復で訓練されたLLaMA3-8Bモデルが,一般機能を失うことなくIFEvalベンチマークでGPT-4-Turboを上回った。
論文 参考訳(メタデータ) (2024-12-16T09:47:43Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Fine-tuning Large Language Models for Entity Matching [3.7277730514654555]
生成型大規模言語モデル(LLM)は、エンティティマッチングのための事前訓練された言語モデルに代わる有望な代替品である。
本稿では,エンティティマッチングのための微調整LDMの可能性について検討する。
論文 参考訳(メタデータ) (2024-09-12T16:20:57Z) - NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models [38.41524186248607]
我々はNV-Embedを導入し、アーキテクチャ設計、トレーニング手順、キュレートされたデータセットを取り入れた。
モデルアーキテクチャでは, プール埋め込みを実現するために, 潜時注意層を提案する。
学習アルゴリズムでは,2段階のコントラッシブ・インストラクション・チューニング手法を導入する。
論文 参考訳(メタデータ) (2024-05-27T17:59:45Z) - Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data [3.9459077974367833]
大規模言語モデル(LLM)は、NLPタスクにおいて顕著な成功を収めた。
我々は、サポートベクトルマシン(SVM)に基づく教師付き古典機械学習モデルと、RoBERTa、BERTweet、SocBERTに基づく3つの教師付き事前訓練言語モデル(PLM)と、6つのテキスト分類タスクで2つのLLMベースの分類器(GPT3.5、GPT4)をベンチマークした。
LLM(GPT-4)を用いた軽量教師付き分類モデルの訓練には,比較的小さな人手によるデータ拡張(GPT-4)が有効であることを示す総合的な実験を行った。
論文 参考訳(メタデータ) (2024-03-27T22:05:10Z) - RA-ISF: Learning to Answer and Understand from Retrieval Augmentation via Iterative Self-Feedback [19.28222902440827]
大規模言語モデル(LLM)は多くのタスクにおいて例外的な性能を示すが、それでもパラメータに格納された知識に大きく依存している。
Retrieval-augmented Generation (RAG)メソッドは、外部知識を統合することでこの問題に対処する。
本稿では、反復的にタスクを分解し、3つのサブモジュールで処理し、モデルの問題解決能力を向上するフレームワークであるRetrieval Augmented Iterative Self-Feedback (RA-ISF)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:01:05Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - Teaching Language Models to Self-Improve through Interactive Demonstrations [83.9421355808174]
大規模言語モデルの自己改善能力は欠如しており、より小さなモデルで学ぶことは困難である。
このような自己改善能力を持つ小型モデルのトレーニングアルゴリズムであるTriPosTを導入する。
我々は,LLaMA-7bの算数および推論タスクの性能を最大7.13%向上させることができることを示す。
論文 参考訳(メタデータ) (2023-10-20T14:11:04Z) - Active Learning for Abstractive Text Summarization [50.79416783266641]
本稿では,抽象テキスト要約におけるアクティブラーニングのための最初の効果的なクエリ戦略を提案する。
ALアノテーションにおける私たちの戦略は、ROUGEと一貫性スコアの点からモデル性能を向上させるのに役立ちます。
論文 参考訳(メタデータ) (2023-01-09T10:33:14Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。