Learning-based GNSS Uncertainty Quantification using Continuous-Time Factor Graph Optimization
- URL: http://arxiv.org/abs/2503.04933v1
- Date: Thu, 06 Mar 2025 20:04:36 GMT
- Title: Learning-based GNSS Uncertainty Quantification using Continuous-Time Factor Graph Optimization
- Authors: Haoming Zhang,
- Abstract summary: This paper presents research findings on two learning-based methods for quantifying measurement uncertainties in global navigation satellite systems (GNSS)<n>We introduce a novel multisensor state estimator that accurately and robustly estimates trajectory from multiple sensor inputs.<n>We validate the proposed learning-based models using real-world sensor data collected in diverse urban environments.
- Score: 2.0818498182253875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This short paper presents research findings on two learning-based methods for quantifying measurement uncertainties in global navigation satellite systems (GNSS). We investigate two learning strategies: offline learning for outlier prediction and online learning for noise distribution approximation, specifically applied to GNSS pseudorange observations. To develop and evaluate these learning methods, we introduce a novel multisensor state estimator that accurately and robustly estimates trajectory from multiple sensor inputs, critical for deriving GNSS measurement residuals used to train the uncertainty models. We validate the proposed learning-based models using real-world sensor data collected in diverse urban environments. Experimental results demonstrate that both models effectively handle GNSS outliers and improve state estimation performance. Furthermore, we provide insightful discussions to motivate future research toward developing a federated framework for robust vehicle localization in challenging environments.
Related papers
- Remaining Useful Life Prediction: A Study on Multidimensional Industrial Signal Processing and Efficient Transfer Learning Based on Large Language Models [6.118896920507198]
This paper introduces an innovative regression framework utilizing large language models (LLMs) for RUL prediction.
Experiments on the Turbofan engine's RUL prediction task show that the proposed model surpasses state-of-the-art (SOTA) methods.
With minimal target domain data for fine-tuning, the model outperforms SOTA methods trained on full target domain data.
arXiv Detail & Related papers (2024-10-04T04:21:53Z) - A Survey on Graph Neural Networks for Remaining Useful Life Prediction: Methodologies, Evaluation and Future Trends [39.22261518678265]
Remaining Useful Life (RUL) prediction is a critical aspect of Prognostics and Health Management (PHM)
Recent research has explored the use of Graph Neural Networks (GNNs) to model spatial information for more accurate RUL prediction.
This paper presents a comprehensive review of GNN techniques applied to RUL prediction, summarizing existing methods and offering guidance for future research.
arXiv Detail & Related papers (2024-09-29T09:38:07Z) - Towards Robust and Interpretable EMG-based Hand Gesture Recognition using Deep Metric Meta Learning [37.21211404608413]
We propose a shift to deep metric-based meta-learning in EMG PR to supervise the creation of meaningful and interpretable representations.
We derive a robust class proximity-based confidence estimator that leads to a better rejection of incorrect decisions.
arXiv Detail & Related papers (2024-04-17T23:37:50Z) - GRANP: A Graph Recurrent Attentive Neural Process Model for Vehicle Trajectory Prediction [3.031375888004876]
We propose a novel model named Graph Recurrent Attentive Neural Process (GRANP) for vehicle trajectory prediction.
GRANP contains an encoder with deterministic and latent paths, and a decoder for prediction.
We show that GRANP achieves state-of-the-art results and can efficiently quantify uncertainties.
arXiv Detail & Related papers (2024-04-09T05:51:40Z) - Online GNN Evaluation Under Test-time Graph Distribution Shifts [92.4376834462224]
A new research problem, online GNN evaluation, aims to provide valuable insights into the well-trained GNNs's ability to generalize to real-world unlabeled graphs.
We develop an effective learning behavior discrepancy score, dubbed LeBeD, to estimate the test-time generalization errors of well-trained GNN models.
arXiv Detail & Related papers (2024-03-15T01:28:08Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Learning-based NLOS Detection and Uncertainty Prediction of GNSS
Observations with Transformer-Enhanced LSTM Network [2.798138034569478]
This work proposes a deeplearning-based method to detect NLOS and predict errors by analyzing pseudo-temporal modeling problem.
We use datasets from Hong Kong and Aachen to train and evaluate the proposed network.
We show that the proposed method avoids trajectory divergence in real-world vehicle localization by classifying and excluding NLOS observations.
arXiv Detail & Related papers (2023-09-01T14:17:02Z) - UncLe-SLAM: Uncertainty Learning for Dense Neural SLAM [60.575435353047304]
We present an uncertainty learning framework for dense neural simultaneous localization and mapping (SLAM)
We propose an online framework for sensor uncertainty estimation that can be trained in a self-supervised manner from only 2D input data.
arXiv Detail & Related papers (2023-06-19T16:26:25Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - A Variational Bayesian Approach to Learning Latent Variables for
Acoustic Knowledge Transfer [55.20627066525205]
We propose a variational Bayesian (VB) approach to learning distributions of latent variables in deep neural network (DNN) models.
Our proposed VB approach can obtain good improvements on target devices, and consistently outperforms 13 state-of-the-art knowledge transfer algorithms.
arXiv Detail & Related papers (2021-10-16T15:54:01Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
We propose a monocular depth estimator SC-Depth, which requires only unlabelled videos for training.
Thanks to the capability of scale-consistent prediction, we show that our monocular-trained deep networks are readily integrated into the ORB-SLAM2 system.
The proposed hybrid Pseudo-RGBD SLAM shows compelling results in KITTI, and it generalizes well to the KAIST dataset without additional training.
arXiv Detail & Related papers (2021-05-25T02:17:56Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees [49.91477656517431]
Quantization-based solvers have been widely adopted in Federated Learning (FL)
No existing methods enjoy all the aforementioned properties.
We propose an intuitively-simple yet theoretically-simple method based on SIGNSGD to bridge the gap.
arXiv Detail & Related papers (2020-02-25T15:12:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.