論文の概要: ZOGRASCOPE: A New Benchmark for Property Graphs
- arxiv url: http://arxiv.org/abs/2503.05268v1
- Date: Fri, 07 Mar 2025 09:33:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:22:20.216761
- Title: ZOGRASCOPE: A New Benchmark for Property Graphs
- Title(参考訳): ZOGRASCOPE: プロパティグラフの新しいベンチマーク
- Authors: Francesco Cazzaro, Justin Kleindienst, Sofia Marquez, Ariadna Quattoni,
- Abstract要約: 本稿では,暗号クエリ言語用に設計されたベンチマークであるZOGRASCOPEを紹介する。
グラフのセマンティック解析は, LLM を単体で行うだけでは解けない, 難解なオープンな問題であることを示す。
- 参考スコア(独自算出の注目度): 3.0748861313823
- License:
- Abstract: Natural language interfaces to knowledge graphs have become increasingly important in recent years, enabling easy and efficient access to structured data. In particular property graphs have seen growing adoption. However, these kind of graphs remain relatively underrepresented in research, which has focused in large part on RDF-style graphs. As a matter of fact there is a lack of resources for evaluating systems on property graphs, with many existing datasets featuring relatively simple queries. To address this gap, we introduce ZOGRASCOPE, a benchmark designed specifically for the cypher query language. The benchmark includes a diverse set of manually annotated queries of varying complexity. We complement this paper with a set of experiments that test the performance of out-of-the-box LLMs of different sizes. Our experiments show that semantic parsing over graphs is still a challenging open problem that can not be solved by prompting LLMs alone.
- Abstract(参考訳): 近年,知識グラフに対する自然言語インタフェースの重要性が高まっており,構造化データへの容易かつ効率的なアクセスが可能になっている。
特にプロパティグラフの採用が増加している。
しかしながら、これらのグラフは、RDFスタイルのグラフに主に焦点をあてた研究において、相対的に不足している。
実際、プロパティグラフ上のシステムを評価するためのリソースが不足しており、多くの既存のデータセットには比較的単純なクエリがある。
このギャップに対処するため,我々は,暗号クエリ言語用に設計されたベンチマークであるZOGRASCOPEを紹介する。
ベンチマークには、さまざまな複雑な手動のアノテートクエリが含まれている。
本論文は,異なるサイズの既製のLCMの性能をテストする一連の実験で補完する。
実験の結果,グラフのセマンティック解析はいまだに難解なオープンな問題であり,LLMを単体で解けないことが判明した。
関連論文リスト
- GraphSOS: Graph Sampling and Order Selection to Help LLMs Understand Graphs Better [13.742220809751627]
GraphSOSは、グラフデータを自然言語テキストに変換する新しいフレームワークである。
Order Selector Moduleはグラフの適切なシリアライズ順序を保証するもので、Subgraph Smpling Moduleはより良い推論のためにより良い構造を持つサブグラフをサンプリングする。
ノード分類とグラフ問合せのための複数のデータセットの実験は、GraphSOSがグラフタスクにおけるLLMのパフォーマンスと能力を改善することを示した。
論文 参考訳(メタデータ) (2025-01-24T11:55:57Z) - CypherBench: Towards Precise Retrieval over Full-scale Modern Knowledge Graphs in the LLM Era [4.369550829556578]
我々はCypherBenchを紹介した。CypherBenchは11の大規模マルチドメインプロパティグラフを持つ最初のベンチマークで、780万のエンティティと10,000以上の質問がある。
本稿では,Cypher を用いて LLM で効率的にクエリ可能な RDF グラフの上のプロパティグラフビューを提案する。
論文 参考訳(メタデータ) (2024-12-24T23:22:04Z) - Can LLMs Convert Graphs to Text-Attributed Graphs? [35.53046810556242]
既存のグラフをテキスト対応グラフに変換するために,Topology-Aware Node description Synthesis (TANS)を提案する。
我々はTANSをテキストリッチ,テキスト制限,テキストフリーのグラフで評価し,その適用性を示した。
論文 参考訳(メタデータ) (2024-12-13T13:32:59Z) - What Do LLMs Need to Understand Graphs: A Survey of Parametric Representation of Graphs [69.48708136448694]
大規模言語モデル(LLM)は、期待される推論能力と推論能力のために、AIコミュニティで再編成されている。
我々は、グラフのこのようなパラメトリック表現、グラフ法則は、LLMがグラフデータを入力として理解させるソリューションであると信じている。
論文 参考訳(メタデータ) (2024-10-16T00:01:31Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [88.4320775961431]
グラフを処理するために,大規模言語モデル(LLM)のベンチマークであるProGraphを導入する。
その結果,現在のLCMの性能は不満足であり,最高のモデルでは36%の精度しか達成できないことがわかった。
本研究では,6つの広く使用されているグラフライブラリに基づいて,クローリングされたドキュメントと自動生成コードを含むLLM4Graphデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-29T11:38:45Z) - Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs [60.71360240206726]
大規模言語モデル(LLM)は、特に知識集約的なタスクにおいて幻覚に悩まされる。
既存の研究は、外部知識コーパスから取得した個々のテキスト単位でLLMを拡張することを提案する。
本稿では,グラフを反復的に推論することで,LLMをグラフで拡張するためのGraph Chain-of-thinkt (Graph-CoT) というフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T15:41:53Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
大規模言語とグラフアシスタント(LLaGA)は、グラフ構造化データの複雑さを扱う革新的なモデルである。
LLaGAは汎用性、一般化性、解釈性に優れており、異なるデータセットやタスク間で一貫して動作する。
実験の結果,LLaGAは4つのデータセットと3つのタスクに1つの単一モデルを用いて優れた性能を提供することがわかった。
論文 参考訳(メタデータ) (2024-02-13T02:03:26Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
現実のテキストグラフを対象とするフレキシブルな問合せフレームワークを開発した。
一般のテキストグラフに対する最初の検索拡張生成(RAG)手法を提案する。
G-Retrieverは、このタスクをSteiner Tree最適化問題として定式化し、グラフ上でRAGを実行する。
論文 参考訳(メタデータ) (2024-02-12T13:13:04Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
大規模言語モデル(LLM)は多くの自然言語処理タスクにおいて顕著な性能を達成している。
LLMがグラフデータを効果的に処理し、トポロジ構造を利用して性能を向上させることができるかどうかを評価することを目的とする。
LLMの性能を特殊グラフモデルと比較することにより、グラフ解析にLLMを使用する際の長所と短所について考察する。
論文 参考訳(メタデータ) (2023-10-07T23:25:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。