論文の概要: Dynamic Knowledge Integration for Evidence-Driven Counter-Argument Generation with Large Language Models
- arxiv url: http://arxiv.org/abs/2503.05328v1
- Date: Fri, 07 Mar 2025 11:13:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:24:29.579734
- Title: Dynamic Knowledge Integration for Evidence-Driven Counter-Argument Generation with Large Language Models
- Title(参考訳): 大規模言語モデルを用いたエビデンス駆動対数生成のための動的知識統合
- Authors: Anar Yeginbergen, Maite Oronoz, Rodrigo Agerri,
- Abstract要約: 本稿では,Large Language Models (LLMs) を用いた対問題生成改善における動的外部知識統合の役割について検討する。
我々は,議論の複雑さと評価可能性のバランスをとるために,議論と反論のペアを手作業でキュレートした新しいデータセットを導入する。
実験の結果、Webから動的外部知識を統合することで、生成した逆問題の品質が大幅に向上することが示された。
- 参考スコア(独自算出の注目度): 5.735035463793008
- License:
- Abstract: This paper investigates the role of dynamic external knowledge integration in improving counter-argument generation using Large Language Models (LLMs). While LLMs have shown promise in argumentative tasks, their tendency to generate lengthy, potentially unfactual responses highlights the need for more controlled and evidence-based approaches. We introduce a new manually curated dataset of argument and counter-argument pairs specifically designed to balance argumentative complexity with evaluative feasibility. We also propose a new LLM-as-a-Judge evaluation methodology that shows a stronger correlation with human judgments compared to traditional reference-based metrics. Our experimental results demonstrate that integrating dynamic external knowledge from the web significantly improves the quality of generated counter-arguments, particularly in terms of relatedness, persuasiveness, and factuality. The findings suggest that combining LLMs with real-time external knowledge retrieval offers a promising direction for developing more effective and reliable counter-argumentation systems.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) を用いた対問題生成における動的外部知識統合の役割について検討する。
LLMは議論的なタスクにおいて有望であることを示しているが、長く、潜在的に非現実的なレスポンスを生成する傾向は、より制御され、エビデンスに基づくアプローチの必要性を浮き彫りにしている。
我々は,議論の複雑さと評価可能性のバランスをとるために,議論と反議論のペアを手作業でキュレートした新しいデータセットを導入する。
また,従来の基準基準指標と比較して,人間の判断と強い相関関係を示す新たなLCM-as-a-Judge評価手法を提案する。
実験の結果,Webからの動的外部知識の統合は,特に関連性,説得性,事実性の観点から,生成した逆問題の品質を著しく向上させることがわかった。
この結果から,LLMとリアルタイム外部知識検索を組み合わせることで,より効果的で信頼性の高い解法システムを開発する上で有望な方向性が示唆された。
関連論文リスト
- Calling a Spade a Heart: Gaslighting Multimodal Large Language Models via Negation [65.92001420372007]
本稿では,マルチモーダル大規模言語モデル(MLLM)を多種多様なベンチマークで体系的に評価する。
否定論が最初に正しい応答を示すために導入されたとき、大きな性能低下を示す。
論文 参考訳(メタデータ) (2025-01-31T10:37:48Z) - Learning to Generate Research Idea with Dynamic Control [21.30777644522451]
大規模言語モデル (LLM) は仮説や研究のアイデアを生み出すことを約束している。
SFT(Supervised Fine-Tuning)とRL(Reinforcement Learning)を組み合わせた2段階のアプローチによる新しいフレームワークを提案する。
本フレームワークは, 新規性, 実現可能性, 有効性の間のトレードオフを動的にナビゲートすることで, 高品質な成果を達成し, 研究アイデアに対するバランスのとれたアプローチを提供する。
論文 参考訳(メタデータ) (2024-12-19T08:28:18Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
本稿では,ALMの信頼性とトレーサビリティ向上を目的とした,新たな自己推論フレームワークを提案する。
このフレームワークは、関連性を認識したプロセス、エビデンスを認識した選択プロセス、軌跡解析プロセスの3つのプロセスで自己推論軌道を構築することを含む。
提案手法の優位性を示すため,4つの公開データセットにまたがるフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-07-29T09:05:10Z) - Retrieval Meets Reasoning: Dynamic In-Context Editing for Long-Text Understanding [11.5386284281652]
動的インテキスト編集による情報検索を再現する新しい手法を提案する。
長大な文脈を拡張可能な外部知識として扱うことにより,本手法は対話的に関連情報を収集・統合する。
実験結果から,提案手法はコンテキスト限定LLMを効果的に活用し,マルチホップ推論に有効であることを示す。
論文 参考訳(メタデータ) (2024-06-18T06:54:28Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
本稿では,大きな言語モデル(LLM)を導入してギャップを埋めるCausal representatiOn AssistanT(COAT)を提案する。
LLMは世界中の大規模な観測に基づいて訓練されており、構造化されていないデータから重要な情報を抽出する優れた能力を示している。
COATはまた、特定変数間の因果関係を見つけるためにCDを採用し、提案された要因を反復的に洗練するためにLSMにフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-06T12:18:54Z) - Exchange-of-Thought: Enhancing Large Language Model Capabilities through
Cross-Model Communication [76.04373033082948]
大規模言語モデル(LLM)は、最近、Chain-of-Thoughtテクニックによる複雑な推論タスクにおいて大きな進歩を遂げました。
本稿では,問題解決時のクロスモデル通信を可能にする新しいフレームワークであるExchange-of-Thought (EoT)を提案する。
論文 参考訳(メタデータ) (2023-12-04T11:53:56Z) - RELIC: Investigating Large Language Model Responses using Self-Consistency [58.63436505595177]
LLM(Large Language Models)は、フィクションと事実を混同し、幻覚として知られる非事実コンテンツを生成することで有名である。
本稿では,ユーザが生成したテキストの信頼性を把握できる対話型システムを提案する。
論文 参考訳(メタデータ) (2023-11-28T14:55:52Z) - EpiK-Eval: Evaluation for Language Models as Epistemic Models [16.485951373967502]
セグメンテッドな物語から一貫した知識表現を定式化する上で,LLMの習熟度を評価するための新しい質問答えベンチマークであるEpiK-Evalを紹介する。
これらの欠点は、一般的な訓練目的の本質的な性質に起因していると論じる。
本研究の成果は,より堅牢で信頼性の高いLCMを開発する上での洞察を与えるものである。
論文 参考訳(メタデータ) (2023-10-23T21:15:54Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - User-Controlled Knowledge Fusion in Large Language Models: Balancing
Creativity and Hallucination [5.046007553593371]
大規模言語モデル(LLM)は多様な、関連性があり、創造的な応答を生成する。
LLMの想像力と事実情報への固執のバランスを取ることは重要な課題である。
本稿では,LLMの想像能力と現実情報への忠実さのバランスを調節する,革新的なユーザ制御機構を提案する。
論文 参考訳(メタデータ) (2023-07-30T06:06:35Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
近年の大規模言語モデル(LLM)の成功は、より強力な対話レコメンデーションシステム(CRS)を開発する大きな可能性を示している。
本稿では,ChatGPTの会話レコメンデーションへの活用について検討し,既存の評価プロトコルが不十分であることを明らかにする。
LLMをベースとしたユーザシミュレータを用いた対話型評価手法iEvaLMを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:12:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。