論文の概要: Enhancing Multi-Hop Fact Verification with Structured Knowledge-Augmented Large Language Models
- arxiv url: http://arxiv.org/abs/2503.08495v1
- Date: Tue, 11 Mar 2025 14:47:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:44:22.284511
- Title: Enhancing Multi-Hop Fact Verification with Structured Knowledge-Augmented Large Language Models
- Title(参考訳): 構造化知識強化大言語モデルによるマルチホップファクト検証の強化
- Authors: Han Cao, Lingwei Wei, Wei Zhou, Songlin Hu,
- Abstract要約: マルチホップ事実検証のための構造化知識強化LLMベースネットワーク(LLM-SKAN)を提案する。
具体的には、LLM駆動の知識エクストラクタを用いて、エンティティとその複雑な関係を含むきめ細かい情報をキャプチャする。
4つの共通利用データセットに対する実験結果から,本モデルの有効性と優位性を示した。
- 参考スコア(独自算出の注目度): 26.023148371263012
- License:
- Abstract: The rapid development of social platforms exacerbates the dissemination of misinformation, which stimulates the research in fact verification. Recent studies tend to leverage semantic features to solve this problem as a single-hop task. However, the process of verifying a claim requires several pieces of evidence with complicated inner logic and relations to verify the given claim in real-world situations. Recent studies attempt to improve both understanding and reasoning abilities to enhance the performance, but they overlook the crucial relations between entities that benefit models to understand better and facilitate the prediction. To emphasize the significance of relations, we resort to Large Language Models (LLMs) considering their excellent understanding ability. Instead of other methods using LLMs as the predictor, we take them as relation extractors, for they do better in understanding rather than reasoning according to the experimental results. Thus, to solve the challenges above, we propose a novel Structured Knowledge-Augmented LLM-based Network (LLM-SKAN) for multi-hop fact verification. Specifically, we utilize an LLM-driven Knowledge Extractor to capture fine-grained information, including entities and their complicated relations. Besides, we leverage a Knowledge-Augmented Relation Graph Fusion module to interact with each node and learn better claim-evidence representations comprehensively. The experimental results on four common-used datasets demonstrate the effectiveness and superiority of our model.
- Abstract(参考訳): 社会プラットフォームの開発が急速に進み、誤情報の普及が促進され、事実検証の研究が促進される。
近年の研究では、この問題を単一ホップタスクとして解くために意味的特徴を活用する傾向にある。
しかし、クレームを検証するプロセスは、現実世界の状況において与えられたクレームを検証するために複雑な内部論理と関係を持ついくつかの証拠を必要とする。
近年の研究では、能力向上のための理解能力と推論能力の両面での改善が試みられているが、より理解し、予測を促進するためにモデルに役立つエンティティ間の重要な関係を見落としている。
関係性の重要性を強調するために,我々は,その優れた理解能力を考慮して,Large Language Models (LLMs) を利用する。
LLMを予測子として使用する他の手法の代わりに、それらを関係抽出子とみなす。
そこで, 上記の課題を解決するために, マルチホップ事実検証のための構造化知識強化LLMベースネットワーク(LLM-SKAN)を提案する。
具体的には、LLM駆動の知識エクストラクタを用いて、エンティティとその複雑な関係を含むきめ細かい情報をキャプチャする。
さらに、知識強化リレーショナルグラフフュージョンモジュールを活用し、各ノードと相互作用し、より優れたクレーム・エビデンス表現を包括的に学習する。
4つの共通利用データセットに対する実験結果から,本モデルの有効性と優位性を示した。
関連論文リスト
- Navigating Semantic Relations: Challenges for Language Models in Abstract Common-Sense Reasoning [5.4141465747474475]
大規模言語モデル(LLM)は、人間のようなテキストを生成し、適度な複雑さの問題を解くことで、顕著な性能を達成した。
概念ネット知識グラフを用いて,LLMにおける抽象的常識推論を体系的に評価する。
論文 参考訳(メタデータ) (2025-02-19T20:20:24Z) - Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning [73.2950349728376]
大規模言語モデル(LLM)は、幅広いタスクで顕著な成功を収めている。
しかし、彼らは情報片間の関係を理解し、推論する必要があるタスクの推論において、依然として課題に直面している。
この課題は、論理的推論やマルチホップ質問応答など、多段階プロセスに関わるタスクにおいて特に顕著である。
本稿では、まず文脈から明示的なグラフを構築することにより、グラフを用いた推論(RwG)を提案する。
論文 参考訳(メタデータ) (2025-01-14T05:18:20Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - Knowledge Graph Structure as Prompt: Improving Small Language Models Capabilities for Knowledge-based Causal Discovery [10.573861741540853]
KG Structure as Promptは、共通ノードやメタパスなどの知識グラフから構造情報を即時学習に統合するための新しいアプローチである。
バイオメディカルデータセットとオープンドメインデータセットの3種類の実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-26T14:07:00Z) - G-SAP: Graph-based Structure-Aware Prompt Learning over Heterogeneous Knowledge for Commonsense Reasoning [8.02547453169677]
本稿では,G-SAP という名称のコモンセンス推論のためのグラフベース構造認識プロンプト学習モデルを提案する。
特にエビデンスグラフは、ConceptNet、Wikipedia、Cambridge Dictionaryといった複数の知識ソースを統合することで構築される。
その結果、既存のモデル、特にOpenbookQAデータセット上のSoTA LM+GNNsモデルよりも6.12%改善された。
論文 参考訳(メタデータ) (2024-05-09T08:28:12Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
大規模言語モデル(LLM)は、人間のコミュニケーションを忠実に反映したテキストの理解と生成の素晴らしい能力を示している。
本稿では,知識編集の問題を定義し,最先端アプローチの包括的レビューを行う。
我々は,代表的知識編集アプローチの総合的評価のための新しいベンチマークであるKnowEditを紹介した。
論文 参考訳(メタデータ) (2024-01-02T16:54:58Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Empowering Language Models with Knowledge Graph Reasoning for Question
Answering [117.79170629640525]
我々はknOwledge ReasOning empowered Language Model (OREO-LM)を提案する。
OREO-LMは、既存のTransformerベースのLMに柔軟に接続できる新しい知識相互作用層で構成されている。
クローズド・ブック・セッティングにおいて,最先端の成果が得られ,性能が著しく向上した。
論文 参考訳(メタデータ) (2022-11-15T18:26:26Z) - Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering [35.40919477319811]
本稿では,事前学習された言語モデルにマルチホップ関係推論モジュールを組み込む新しい知識認識手法を提案する。
外部知識グラフから抽出したサブグラフに対して、マルチホップ、マルチリレーショナル推論を行う。
パスベースの推論手法とグラフニューラルネットワークを統合して、より優れた解釈性とスケーラビリティを実現する。
論文 参考訳(メタデータ) (2020-05-01T23:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。