論文の概要: LLM-based Iterative Approach to Metamodeling in Automotive
- arxiv url: http://arxiv.org/abs/2503.05449v1
- Date: Fri, 07 Mar 2025 14:19:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:24:56.736408
- Title: LLM-based Iterative Approach to Metamodeling in Automotive
- Title(参考訳): LLMによる自動車のメタモデリングへの反復的アプローチ
- Authors: Nenad Petrovic, Fengjunjie Pan, Vahid Zolfaghari, Alois Knoll,
- Abstract要約: 本稿では,Large Language Model (LLM) を利用したドメイン固有メタモデル構築の自動化手法を提案する。
プロトタイプはPythonプログラミング言語を使用してWebサービスとして実装され、OpenAIのGPT-4oは基盤となるLLMとして使用された。
- 参考スコア(独自算出の注目度): 3.7311118301529125
- License:
- Abstract: In this paper, we introduce an automated approach to domain-specific metamodel construction relying on Large Language Model (LLM). The main focus is adoption in automotive domain. As outcome, a prototype was implemented as web service using Python programming language, while OpenAI's GPT-4o was used as the underlying LLM. Based on the initial experiments, this approach successfully constructs Ecore metamodel based on set of automotive requirements and visualizes it making use of PlantUML notation, so human experts can provide feedback in order to refine the result. Finally, locally deployable solution is also considered, including the limitations and additional steps required.
- Abstract(参考訳): 本稿では,Large Language Model (LLM) を利用したドメイン固有メタモデル構築の自動化手法を提案する。
主な焦点は自動車分野における採用である。
その結果、プロトタイプはPythonプログラミング言語を使用してWebサービスとして実装され、OpenAIのGPT-4oは基盤となるLLMとして使用された。
最初の実験に基づいて、本手法は、自動車要件のセットに基づいてEcoreメタモデルの構築に成功し、それをPlantUML表記を用いて視覚化することにより、人間の専門家が結果を洗練するためにフィードバックを提供することができる。
最後に、制限や追加ステップを含む、ローカルにデプロイ可能なソリューションも検討されている。
関連論文リスト
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
自動機械学習(AutoML)は、機械学習(ML)を自動かつ効率的に構成する基本的目的を中心に形成された。
AutoMLの完全な可能性を解き放つ鍵は、現在探索されていないAutoMLシステムとのユーザインタラクションの側面に対処することにある、と私たちは主張する。
論文 参考訳(メタデータ) (2024-06-05T15:05:24Z) - Synergy of Large Language Model and Model Driven Engineering for Automated Development of Centralized Vehicular Systems [2.887732304499794]
モデル駆動工学(MDE)とLarge Language Models(LLM)の相乗効果を利用したツールのプロトタイプを提案する。
CARLAシミュレータを用いて、緊急ブレーキのシナリオにおいて、生成されたコードをシミュレーション環境で評価する。
論文 参考訳(メタデータ) (2024-04-08T13:28:11Z) - AutoMMLab: Automatically Generating Deployable Models from Language Instructions for Computer Vision Tasks [37.48197934228379]
コンピュータビジョンのためのエンドツーエンドモデルプロダクションワークフロー全体を自動化するAutoMLシステムはありません。
本稿では、ユーザの自然言語要求を理解し、プロダクション対応モデルを生成するワークフロー全体を実行することを含む、新しいリクエスト・ツー・モデルタスクを提案する。
これにより、専門家でない個人が、ユーザフレンドリーな言語インターフェースを通じて、タスク固有のモデルを簡単に構築できるようになる。
論文 参考訳(メタデータ) (2024-02-23T14:38:19Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLMは、現実的なシミュレータでクローズループの自律運転を実行するためのフレームワークである。
モジュールADシステムの動作計画モジュールをモデル化するために,MLLM (Multi-modal LLM) を用いる。
このモデルは、Apolloのような既存のADシステムでプラグイン・アンド・プレイすることで、クローズループ運転を行うことができる。
論文 参考訳(メタデータ) (2023-12-14T18:59:05Z) - ChipNeMo: Domain-Adapted LLMs for Chip Design [19.43613652552849]
ChipNeMoは、産業用チップ設計のための大規模言語モデル(LLM)の応用を探求することを目的としている。
ドメイン適応型トークン化、ドメイン適応型継続事前トレーニング、ドメイン固有命令とのモデルアライメント、ドメイン適応型検索モデルを採用する。
論文 参考訳(メタデータ) (2023-10-31T22:35:58Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
大規模言語モデル(LLM)は、様々なドメインでタスクを処理するための実現可能なソリューションとなっている。
本稿では、コンテンツモデレーションのためにプライベートにデプロイ可能なLLMモデルを微調整する方法を紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:09:44Z) - ModelScope-Agent: Building Your Customizable Agent System with
Open-source Large Language Models [74.64651681052628]
本稿では,オープンソースのLCMをコントローラとする実世界のアプリケーションのためのカスタマイズ可能なエージェントフレームワークであるModelScope-Agentを紹介する。
ユーザフレンドリーなシステムライブラリを提供し、カスタマイズ可能なエンジン設計により、複数のオープンソースLLMでモデルトレーニングをサポートする。
ツール使用データ収集、ツール検索、ツール登録、メモリ制御、カスタマイズされたモデルトレーニング、評価にまたがる包括的なフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-09-02T16:50:30Z) - Automated Machine Learning for Remaining Useful Life Predictions [15.905036273632994]
本稿では、自動RUL予測のためのAutoML駆動のエンドツーエンドアプローチであるAutoRULを紹介する。
我々はAutoMLが手作りのデータ駆動型RUL予測に代わる実行可能な代替手段であることを示す。
論文 参考訳(メタデータ) (2023-06-21T12:15:57Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
本稿では,ユーザガイド応答最適化 (UGRO) という代替手法を提案し,タスク指向の対話モデルと組み合わせる。
このアプローチでは、アノテーションのないユーザシミュレータとしてLLMを使用して対話応答を評価し、より小型のエンドツーエンドTODモデルと組み合わせる。
提案手法は従来のSOTA(State-of-the-art)よりも優れている。
論文 参考訳(メタデータ) (2023-06-16T13:04:56Z) - Automated Machine Learning: From Principles to Practices [40.57162255913511]
AutoMLは、与えられたタスクに対して、データ駆動方式で満足いくML構成を生成することを目的としている。
まずはAutoMLの正式な定義から始め、二段階学習の目的を含むその原則を導入します。
MLパイプラインの設定、ワンショットのニューラルアーキテクチャサーチ、基礎モデルとの統合など、模範的なアプリケーションによる原則とプラクティスについて説明する。
論文 参考訳(メタデータ) (2018-10-31T14:35:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。