論文の概要: Understanding the Limits of Lifelong Knowledge Editing in LLMs
- arxiv url: http://arxiv.org/abs/2503.05683v1
- Date: Fri, 07 Mar 2025 18:45:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:24:10.644577
- Title: Understanding the Limits of Lifelong Knowledge Editing in LLMs
- Title(参考訳): LLMにおける生涯知識編集の限界を理解する
- Authors: Lukas Thede, Karsten Roth, Matthias Bethge, Zeynep Akata, Tom Hartvigsen,
- Abstract要約: 我々は、生涯にわたる知識編集の研究を現実の編集に事実上の規模で橋渡しする。
まず,実世界のウィキデータ編集の大規模ベンチマークであるWikiBigEditを紹介した。
最初の例では、知識編集のための500万以上の質問応答ペアが含まれている。
- 参考スコア(独自算出の注目度): 59.12302872055081
- License:
- Abstract: Keeping large language models factually up-to-date is crucial for deployment, yet costly retraining remains a challenge. Knowledge editing offers a promising alternative, but methods are only tested on small-scale or synthetic edit benchmarks. In this work, we aim to bridge research into lifelong knowledge editing to real-world edits at practically relevant scale. We first introduce WikiBigEdit; a large-scale benchmark of real-world Wikidata edits, built to automatically extend lifelong for future-proof benchmarking. In its first instance, it includes over 500K question-answer pairs for knowledge editing alongside a comprehensive evaluation pipeline. Finally, we use WikiBigEdit to study existing knowledge editing techniques' ability to incorporate large volumes of real-world facts and contrast their capabilities to generic modification techniques such as retrieval augmentation and continual finetuning to acquire a complete picture of the practical extent of current lifelong knowledge editing.
- Abstract(参考訳): 大規模言語モデルを現実的に最新に保つことは、デプロイに不可欠だが、コストのかかる再トレーニングは依然として課題である。
知識編集は有望な代替手段であるが、メソッドは小規模または合成編集ベンチマークでのみテストされる。
本研究では,生涯にわたる知識編集の研究を現実の編集に橋渡しすることを目的としている。
最初にWikiBigEditを紹介した。これはWikidata編集の大規模なベンチマークで、将来的なベンチマークのために自動的に寿命を延ばすために構築されている。
最初の例では、知識編集のための500万以上の質問応答ペアと、包括的な評価パイプラインが含まれている。
最後に,WikiBigEditを用いて,既存の知識編集技術を用いて,大量の実世界の事実を組み込む能力について検討し,検索の強化や連続的な微調整といった汎用的な修正技術と対比して,現在の生涯的知識編集の実際的な範囲の完全な画像を取得する。
関連論文リスト
- K-Edit: Language Model Editing with Contextual Knowledge Awareness [71.73747181407323]
知識に基づくモデル編集は、大きな言語モデルの重みを正確に修正することを可能にする。
我々は、文脈的に一貫した知識編集を生成するための効果的なアプローチであるK-Editを提案する。
論文 参考訳(メタデータ) (2025-02-15T01:35:13Z) - AnyEdit: Edit Any Knowledge Encoded in Language Models [69.30638272162267]
大規模言語モデル(LLM)のための新しい自動回帰編集パラダイムであるAnyEditを提案する。
長い形式の知識を逐次チャンクに分解し、各チャンク内のキートークンを反復的に編集し、一貫性と正確な出力を保証する。
UnKEBench、AKEW、そして我々の長文の多様な知識のための新しいEditEverythingデータセットを含むベンチマークでは、強いベースラインを21.5%上回っている。
論文 参考訳(メタデータ) (2025-02-08T16:18:37Z) - Related Knowledge Perturbation Matters: Rethinking Multiple Pieces of Knowledge Editing in Same-Subject [49.559994791305535]
現在最先端の編集手法は、複数の関連知識を同じ主題に編集する作業で苦労している。
本稿では,textS2textRKE$(Same-Subject Related Knowledge Editing)ベンチマークを紹介する。
実験の結果,ROMやMEMITのような主流の位置情報編集手法だけが「関連する知識の摂動」を示すことがわかった。
論文 参考訳(メタデータ) (2025-02-08T04:47:17Z) - O-Edit: Orthogonal Subspace Editing for Language Model Sequential Editing [0.0]
大規模言語モデル(LLM)は、事前訓練中に知識を取得するが、時間が経つにつれて、この知識は誤りまたは時代遅れになり、訓練後に更新が必要になる。
このアルゴリズムは、各知識更新の方向をアルゴリズム化し、逐次更新間の干渉を最小限にし、新しい更新が無関係な知識に与える影響を減らす。
メインストリームのLCM上で数千の編集を行うことができ、既存のメソッドの4.2倍の性能向上を実現し、下流のタスクでモデルのパフォーマンスを効果的に保ち、パラメータのオーバーヘッドを最小限に抑えることができる。
論文 参考訳(メタデータ) (2024-10-15T10:16:45Z) - Editing the Mind of Giants: An In-Depth Exploration of Pitfalls of Knowledge Editing in Large Language Models [26.516571783335824]
近年の研究では、知識の歪みや一般的な能力の劣化など、編集後に現れた副作用が特定されている。
本調査では,これらの側面を包括的に研究し,大規模言語モデルにおける知識編集の課題を統一的に考察する。
論文 参考訳(メタデータ) (2024-06-03T15:28:21Z) - Editing Conceptual Knowledge for Large Language Models [65.38231526537476]
本稿では,Large Language Models(LLMs)における概念知識の編集の先駆者となる。
本研究では,新しいベンチマークデータセットConceptEditを構築し,評価のための新しいメトリクスセットを確立する。
実験の結果,既存の編集手法は概念レベルの定義をある程度効率的に修正できるが,関連する瞬間的知識を歪ませる可能性も示された。
論文 参考訳(メタデータ) (2024-03-10T16:57:10Z) - AKEW: Assessing Knowledge Editing in the Wild [79.96813982502952]
AKEW(Assessing Knowledge Editing in the Wild)は知識編集のための新しい実用的なベンチマークである。
知識更新の編集設定は、構造化された事実、構造化されていない事実としてのテキスト、抽出された三つ組の3つを網羅している。
大規模な実験を通じて、最先端の知識編集手法と実践シナリオの間にかなりのギャップがあることを実証する。
論文 参考訳(メタデータ) (2024-02-29T07:08:34Z) - EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models [45.70959260613425]
本稿では,大規模言語モデルのための知識編集フレームワークであるEasyEditを提案する。
様々な最先端の知識編集アプローチをサポートし、よく知られたLLMにも容易に適用できる。
我々はLlaMA-2の知識編集結果をEasyEditで報告し、知識編集が従来の微調整よりも優れていることを示した。
論文 参考訳(メタデータ) (2023-08-14T16:52:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。