Evaluating Prediction-based Interventions with Human Decision Makers In Mind
- URL: http://arxiv.org/abs/2503.05704v2
- Date: Wed, 26 Mar 2025 21:23:41 GMT
- Title: Evaluating Prediction-based Interventions with Human Decision Makers In Mind
- Authors: Inioluwa Deborah Raji, Lydia Liu,
- Abstract summary: We formalize and investigate various models of human decision-making in the presence of a predictive model aid.<n>We show that each of these behavioural models produces dependencies across decision subjects and results in the violation of existing assumptions.
- Score: 1.192656186481075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated decision systems (ADS) are broadly deployed to inform and support human decision-making across a wide range of consequential settings. However, various context-specific details complicate the goal of establishing meaningful experimental evaluations for prediction-based interventions. Notably, current experiment designs rely on simplifying assumptions about human decision making in order to derive causal estimates. In reality, specific experimental design decisions may induce cognitive biases in human decision makers, which could then significantly alter the observed effect sizes of the prediction intervention. In this paper, we formalize and investigate various models of human decision-making in the presence of a predictive model aid. We show that each of these behavioural models produces dependencies across decision subjects and results in the violation of existing assumptions, with consequences for treatment effect estimation. This work aims to further advance the scientific validity of intervention-based evaluation schemes for the assessment of ADS deployments.
Related papers
- Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
arXiv Detail & Related papers (2024-04-29T08:16:30Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) are used to automate decision-making tasks.<n>In this paper, we evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.<n>We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types.<n>These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
Susceptibility to misinformation describes the degree of belief in unverifiable claims that is not observable.
Existing susceptibility studies heavily rely on self-reported beliefs.
We propose a computational approach to model users' latent susceptibility levels.
arXiv Detail & Related papers (2023-11-16T07:22:56Z) - A Closer Look at the Intervention Procedure of Concept Bottleneck Models [18.222350428973343]
Concept bottleneck models (CBMs) are a class of interpretable neural network models that predict the target response of a given input based on its high-level concepts.
CBMs enable domain experts to intervene on the predicted concepts and rectify any mistakes at test time, so that more accurate task predictions can be made at the end.
We develop various ways of selecting intervening concepts to improve the intervention effectiveness and conduct an array of in-depth analyses as to how they evolve under different circumstances.
arXiv Detail & Related papers (2023-02-28T02:37:24Z) - Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding [2.8498944632323755]
We propose a unified framework for the robust design and evaluation of predictive algorithms in selectively observed data.
We impose general assumptions on how much the outcome may vary on average between unselected and selected units.
We develop debiased machine learning estimators for the bounds on a large class of predictive performance estimands.
arXiv Detail & Related papers (2022-12-19T20:41:44Z) - On the Fairness of Machine-Assisted Human Decisions [3.4069627091757178]
We show that the inclusion of a biased human decision-maker can revert common relationships between the structure of the algorithm and the qualities of resulting decisions.
In the lab experiment, we demonstrate how predictions informed by gender-specific information can reduce average gender disparities in decisions.
arXiv Detail & Related papers (2021-10-28T17:24:45Z) - Stochastic Intervention for Causal Effect Estimation [7.015556609676951]
We propose a new propensity score and intervention effect estimator (SIE) to estimate intervention effect.
We also design a customized genetic algorithm specific to intervention effect (Ge-SIO) with the aim of providing causal evidence for decision making.
Our proposed measures and algorithms can achieve a significant performance lift in comparison with state-of-the-art baselines.
arXiv Detail & Related papers (2021-05-27T01:12:03Z) - When Does Uncertainty Matter?: Understanding the Impact of Predictive
Uncertainty in ML Assisted Decision Making [68.19284302320146]
We carry out user studies to assess how people with differing levels of expertise respond to different types of predictive uncertainty.
We found that showing posterior predictive distributions led to smaller disagreements with the ML model's predictions.
This suggests that posterior predictive distributions can potentially serve as useful decision aids which should be used with caution and take into account the type of distribution and the expertise of the human.
arXiv Detail & Related papers (2020-11-12T02:23:53Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.