Multi-time Predictions of Wildfire Grid Map using Remote Sensing Local
Data
- URL: http://arxiv.org/abs/2209.10102v1
- Date: Thu, 15 Sep 2022 22:34:06 GMT
- Title: Multi-time Predictions of Wildfire Grid Map using Remote Sensing Local
Data
- Authors: Hyung-Jin Yoon and Petros Voulgaris
- Abstract summary: This paper proposes a distributed learning framework that shares local data collected in ten locations in the western USA throughout local agents.
The proposed model has distinct features that address the characteristic need in prediction evaluations, including dynamic online estimation and time-series modeling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to recent climate changes, we have seen more frequent and severe
wildfires in the United States. Predicting wildfires is critical for natural
disaster prevention and mitigation. Advances in technologies in data processing
and communication enabled us to access remote sensing data. With the remote
sensing data, valuable spatiotemporal statistical models can be created and
used for resource management practices. This paper proposes a distributed
learning framework that shares local data collected in ten locations in the
western USA throughout the local agents. The local agents aim to predict
wildfire grid maps one, two, three, and four weeks in advance while online
processing the remote sensing data stream. The proposed model has distinct
features that address the characteristic need in prediction evaluations,
including dynamic online estimation and time-series modeling. Local fire event
triggers are not isolated between locations, and there are confounding factors
when local data is analyzed due to incomplete state observations. Compared to
existing approaches that do not account for incomplete state observation within
wildfire time-series data, on average, we can achieve higher prediction
performance.
Related papers
- Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Rapid Wildfire Hotspot Detection Using Self-Supervised Learning on Temporal Remote Sensing Data [0.12289361708127873]
Leveraging remote sensed data from satellite networks and advanced AI models to automatically detect hotspots is an effective way to build wildfire monitoring systems.
We propose a novel dataset containing time series of remotely sensed data related to European fire events and a Self-Supervised Learning (SSL)-based model able to analyse multi-temporal data and identify hotspots in potentially near real time.
We train and evaluate the performance of our model using our dataset and Thraws, a dataset of thermal anomalies including several fire events, obtaining an F1 score of 63.58.
arXiv Detail & Related papers (2024-05-30T14:31:46Z) - Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
We study spatial-temporal forecasting for a region of interest without any historical observations.
We propose a model named STSM for the task.
Our key insight is to learn from the locations that resemble those in the region of interest.
arXiv Detail & Related papers (2024-01-19T06:26:05Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time [69.77704012415845]
Temporal shifts can considerably degrade performance of machine learning models deployed in the real world.
We benchmark 13 prior approaches, including methods in domain generalization, continual learning, self-supervised learning, and ensemble learning.
Under both evaluation strategies, we observe an average performance drop of 20% from in-distribution to out-of-distribution data.
arXiv Detail & Related papers (2022-11-25T17:07:53Z) - Forecasting Unobserved Node States with spatio-temporal Graph Neural
Networks [1.0965065178451106]
We develop a framework that allows forecasting the state at entirely unobserved locations based on spatial-temporal correlations and the graph inductive bias.
Our framework can be combined with any Graph Neural Network, that exploits surrounding correlations with observed locations by using the network's graph structure.
Our empirical evaluation of both simulated and real-world datasets demonstrates that Graph Neural Networks are well-suited for this task.
arXiv Detail & Related papers (2022-11-21T15:52:06Z) - Next Day Wildfire Spread: A Machine Learning Data Set to Predict
Wildfire Spreading from Remote-Sensing Data [5.814925201882753]
Next Day Wildfire Spread' is a curated data set of historical wildfires aggregating nearly a decade of remote-sensing data across the United States.
We implement a convolutional autoencoder that takes advantage of the spatial information of this data to predict wildfire spread.
This data set can be used as a benchmark for developing wildfire propagation models based on remote sensing data for a lead time of one day.
arXiv Detail & Related papers (2021-12-04T23:28:44Z) - Learning Wildfire Model from Incomplete State Observations [0.0]
We create a dynamic model for future wildfire predictions of five locations within the western United States through a deep neural network.
The proposed model has distinct features that address the characteristic need in prediction evaluations, including dynamic online estimation and time-series modeling.
arXiv Detail & Related papers (2021-11-28T03:21:46Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote
Sensing Data [64.40187171234838]
Seasonal Contrast (SeCo) is an effective pipeline to leverage unlabeled data for in-domain pre-training of re-mote sensing representations.
SeCo will be made public to facilitate transfer learning and enable rapid progress in re-mote sensing applications.
arXiv Detail & Related papers (2021-03-30T18:26:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.