論文の概要: LapLoss: Laplacian Pyramid-based Multiscale loss for Image Translation
- arxiv url: http://arxiv.org/abs/2503.05974v1
- Date: Fri, 07 Mar 2025 23:05:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:46:20.963058
- Title: LapLoss: Laplacian Pyramid-based Multiscale loss for Image Translation
- Title(参考訳): LapLoss: 画像翻訳のためのラプラシアピラミッドに基づくマルチスケールロス
- Authors: Krish Didwania, Ishaan Gakhar, Prakhar Arya, Sanskriti Labroo,
- Abstract要約: 本稿では,ラプラシアンピラミッド中心ネットワークに基づくI2ITコントラスト強化のための新しいアプローチであるLapLossを紹介する。
提案手法は複数の識別器アーキテクチャを用いており、それぞれ異なる解像度で動作し、高レベルな特徴をキャプチャする。
提案手法は、複数のスケールでの損失を計算し、再構成精度と知覚品質のバランスをとり、全体像生成を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Contrast enhancement, a key aspect of image-to-image translation (I2IT), improves visual quality by adjusting intensity differences between pixels. However, many existing methods struggle to preserve fine-grained details, often leading to the loss of low-level features. This paper introduces LapLoss, a novel approach designed for I2IT contrast enhancement, based on the Laplacian pyramid-centric networks, forming the core of our proposed methodology. The proposed approach employs a multiple discriminator architecture, each operating at a different resolution to capture high-level features, in addition to maintaining low-level details and textures under mixed lighting conditions. The proposed methodology computes the loss at multiple scales, balancing reconstruction accuracy and perceptual quality to enhance overall image generation. The distinct blend of the loss calculation at each level of the pyramid, combined with the architecture of the Laplacian pyramid enables LapLoss to exceed contemporary contrast enhancement techniques. This framework achieves state-of-the-art results, consistently performing well across different lighting conditions in the SICE dataset.
- Abstract(参考訳): コントラスト強調(Contrast enhancement)は、画像と画像の変換(I2IT)の重要な側面であり、画素間の強度差を調整することで視覚的品質を向上させる。
しかし、多くの既存手法は細かな詳細を保存するのに苦労し、しばしば低レベルの特徴が失われる。
本稿では,I2ITコントラスト強化のための新しいアプローチであるLapLossを紹介する。
提案手法は複数の識別器アーキテクチャを用いており、それぞれ異なる解像度で動作し、低レベルの細部やテクスチャを混合照明条件下で保持する。
提案手法は、複数のスケールでの損失を計算し、再構成精度と知覚品質のバランスをとり、全体像生成を向上させる。
ピラミッドの各々のレベルでの損失計算とラプラシアピラミッドの建築を組み合わせることで、ラップロスは現代のコントラスト強化技術を超えることができる。
このフレームワークは最先端の結果を達成し、SICEデータセット内の様々な照明条件に対して一貫して良好に機能する。
関連論文リスト
- Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
展開融合法は、ディープラーニングの強力な表現能力とモデルベースアプローチの堅牢性を統合する。
本稿では,衛星画像融合のためのモデルに基づく深部展開手法を提案する。
PRISMA、Quickbird、WorldView2データセットの実験結果から、本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2024-09-04T13:05:00Z) - Multi-Scale Representation Learning for Image Restoration with State-Space Model [13.622411683295686]
効率的な画像復元のためのマルチスケール状態空間モデル(MS-Mamba)を提案する。
提案手法は,計算複雑性を低く保ちながら,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-08-19T16:42:58Z) - Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
超解像アルゴリズムは、同一シーンから撮影された1つ以上の低解像度画像を高解像度画像に変換する。
再構成過程における画像の特徴抽出と非線形マッピング手法は,既存のアルゴリズムでは依然として困難である。
目的は、高解像度の画像から高品質で高解像度の画像を復元することである。
論文 参考訳(メタデータ) (2024-07-18T06:50:39Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
低照度画像強調(LLIE)は、低照度画像を改善することを目的としている。
既存の手法では、様々な明るさ劣化からの回復の不確実性と、テクスチャと色情報の喪失という2つの課題に直面している。
我々は、量子化された先行値と画像の精細化を利用して、新しいエンハンスメント手法、CodeEnhanceを提案する。
論文 参考訳(メタデータ) (2024-04-08T07:34:39Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
本稿では,低光環境下で撮像した光場(LF)画像の復元に,DCUNet(Deep compensation network openfolding)を提案する。
このフレームワークは、中間拡張結果を使用して照明マップを推定し、展開プロセスで新しい拡張結果を生成する。
本稿では,LF画像の特徴を適切に活用するために,擬似明示的特徴相互作用モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-10T07:53:06Z) - Pyramid Texture Filtering [86.15126028139736]
目立った構造を保ちながらテクスチャをスムーズにするための,シンプルだが効果的な手法を提案する。
ガウスピラミッドの粗いレベルは、しばしば自然にテクスチャを排除し、主要な画像構造を要約する。
本手法は, 異なるスケール, 局所的なコントラスト, 形状のテクスチャから構造を分離する上で, 構造劣化や視覚的アーティファクトの導入を伴わずに有効であることを示す。
論文 参考訳(メタデータ) (2023-05-11T02:05:30Z) - Progressively-connected Light Field Network for Efficient View Synthesis [69.29043048775802]
本稿では、複雑な前方シーンのビュー合成のためのプログレッシブ・コネクテッド・ライトフィールド・ネットワーク(ProLiF)を提案する。
ProLiFは4Dライトフィールドをエンコードし、画像やパッチレベルの損失に対するトレーニングステップで大量の光線をレンダリングすることができる。
論文 参考訳(メタデータ) (2022-07-10T13:47:20Z) - PixelPyramids: Exact Inference Models from Lossless Image Pyramids [58.949070311990916]
Pixel-Pyramidsは、画像画素の関節分布を符号化するスケール特異的表現を用いたブロック自動回帰手法である。
様々な画像データセット、特に高解像度データに対する密度推定の最先端結果が得られる。
CelebA-HQ 1024 x 1024 では,フローベースモデルの並列化よりもサンプリング速度が優れているにもかかわらず,密度推定値がベースラインの 44% に向上することが観察された。
論文 参考訳(メタデータ) (2021-10-17T10:47:29Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
空間的に変化する劣化に苦しむ画像の復元のための学習ベースソリューションを提案する。
本研究では、歪み局所化情報を活用し、画像中の困難な領域に動的に適応するネットワーク設計であるSPAIRを提案する。
論文 参考訳(メタデータ) (2021-08-19T11:02:25Z) - High-Resolution Photorealistic Image Translation in Real-Time: A
Laplacian Pyramid Translation Network [23.981019687483506]
閉形式ラプラシアピラミッドの分解と再構成に基づく高分解能フォトリアリスティックI2ITタスクの高速化に着目する。
この2つのタスクを同時に実行するために,ラプラシアンピラミッド翻訳ネットワーク(N)を提案する。
我々のモデルは高解像度の特徴写像を処理し、画像の詳細を忠実に保存することで消費される重い計算の大部分を回避している。
論文 参考訳(メタデータ) (2021-05-19T15:05:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。