論文の概要: Nearly Optimal Differentially Private ReLU Regression
- arxiv url: http://arxiv.org/abs/2503.06009v1
- Date: Sat, 08 Mar 2025 02:09:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:52:12.587743
- Title: Nearly Optimal Differentially Private ReLU Regression
- Title(参考訳): ほぼ最適差分型ReLU回帰
- Authors: Meng Ding, Mingxi Lei, Shaowei Wang, Tianhang Zheng, Di Wang, Jinhui Xu,
- Abstract要約: 微分プライバシ(DP)モデルにおいて、最も基本的な非学習問題の1つ、ReLU回帰について検討する。
TildeO(fracd2N2 varepsilon2N2 varepsilon2N2 varepsilon2N2 varepsilon2N2 varepsilon2N2 varepsilon2N2 varepsilon2N2 varepsilon2N2
- 参考スコア(独自算出の注目度): 18.599299269974498
- License:
- Abstract: In this paper, we investigate one of the most fundamental nonconvex learning problems, ReLU regression, in the Differential Privacy (DP) model. Previous studies on private ReLU regression heavily rely on stringent assumptions, such as constant bounded norms for feature vectors and labels. We relax these assumptions to a more standard setting, where data can be i.i.d. sampled from $O(1)$-sub-Gaussian distributions. We first show that when $\varepsilon = \tilde{O}(\sqrt{\frac{1}{N}})$ and there is some public data, it is possible to achieve an upper bound of $\Tilde{O}(\frac{d^2}{N^2 \varepsilon^2})$ for the excess population risk in $(\epsilon, \delta)$-DP, where $d$ is the dimension and $N$ is the number of data samples. Moreover, we relax the requirement of $\epsilon$ and public data by proposing and analyzing a one-pass mini-batch Generalized Linear Model Perceptron algorithm (DP-MBGLMtron). Additionally, using the tracing attack argument technique, we demonstrate that the minimax rate of the estimation error for $(\varepsilon, \delta)$-DP algorithms is lower bounded by $\Omega(\frac{d^2}{N^2 \varepsilon^2})$. This shows that DP-MBGLMtron achieves the optimal utility bound up to logarithmic factors. Experiments further support our theoretical results.
- Abstract(参考訳): 本稿では、差分プライバシー(DP)モデルにおいて、最も基本的な非凸学習問題であるReLU回帰の1つについて検討する。
プライベートReLU回帰に関する以前の研究は、特徴ベクトルやラベルに対する定数有界ノルムのような厳密な仮定に大きく依存していた。
これらの仮定はより標準的な設定に緩和され、$O(1)$-sub-ガウス分布からデータをサンプリングすることができる。
最初に、$\varepsilon = \tilde{O}(\sqrt{\frac{1}{N}})$といくつかの公開データが存在する場合、$(\epsilon, \delta)$-DPの過剰な集団リスクに対して$\Tilde{O}(\frac{d^2}{N^2 \varepsilon^2})$の上限を達成でき、$d$は次元であり、$N$はデータサンプルの数である。
さらに,1パスのミニバッチ一般化線形モデルパーセプトロンアルゴリズム(DP-MBGLMtron)を提案し,解析することで,$\epsilon$および公開データの要求を緩和する。
さらに、トレース攻撃引数法を用いて、$(\varepsilon, \delta)$-DPアルゴリズムの推定誤差の最小値が$\Omega(\frac{d^2}{N^2 \varepsilon^2})$で下げられていることを示す。
このことは、DP-MBGLMtronが対数係数に縛られた最適効用を達成することを示している。
実験は我々の理論的結果をさらに裏付ける。
関連論文リスト
- Better Locally Private Sparse Estimation Given Multiple Samples Per User [2.9562742331218725]
ユーザレベルの局所微分プライベートスパース線形回帰について検討する。
我々は、$n$のユーザがそれぞれ$m$のサンプルを提供していれば、$d$の線形依存を排除できることを示した。
本稿では,まず候補変数を選択し,次に狭義の低次元空間で推定を行うフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-08T08:47:20Z) - Private Mean Estimation with Person-Level Differential Privacy [6.621676316292624]
複数のサンプルを持つ場合の個人レベルの個人別平均推定について検討した。
我々は、計算効率のよいアルゴリズムを、純粋DPで、計算効率の悪いアルゴリズムを、ほぼ一致する下界は、近似DPの最も寛容な場合を抑える。
論文 参考訳(メタデータ) (2024-05-30T18:20:35Z) - Improved Analysis of Sparse Linear Regression in Local Differential
Privacy Model [38.66115499136791]
局所微分プライバシー(LDP)モデルにおける疎線形回帰の問題を再考する。
そこで本研究では,この問題の第一種である革新的NLDPアルゴリズムを提案する。
その結果, 疎線形回帰問題における非私的ケース, 中央DPモデル, 局所DPモデルとの基本的差異が明らかとなった。
論文 参考訳(メタデータ) (2023-10-11T10:34:52Z) - Near Sample-Optimal Reduction-based Policy Learning for Average Reward
MDP [58.13930707612128]
この研究は、平均報酬マルコフ決定過程(AMDP)における$varepsilon$-Optimal Policyを得る際のサンプルの複雑さを考察する。
我々は、状態-作用対当たりの$widetilde O(H varepsilon-3 ln frac1delta)$サンプルを証明し、$H := sp(h*)$は任意の最適ポリシーのバイアスのスパンであり、$varepsilon$は精度、$delta$は失敗確率である。
論文 参考訳(メタデータ) (2022-12-01T15:57:58Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - (Nearly) Optimal Private Linear Regression via Adaptive Clipping [22.639650869444395]
固定されたガウス型分布から各データ点をサンプリングする微分プライベート線形回帰問題について検討する。
本稿では,各イテレーションの点を置換せずにサンプリングする1パスのミニバッチ勾配勾配法(DP-AMBSSGD)を提案し,解析する。
論文 参考訳(メタデータ) (2022-07-11T08:04:46Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
対象ベクトルの少数のエントリのみを問合せすることを目的とした線形回帰のためのアクティブサンプリングアルゴリズムについて検討する。
我々はこの$d$への依存が対数的要因まで最適であることを示す。
また、損失関数に対して最初の全感度上界$O(dmax1,p/2log2 n)$を提供し、最大で$p$成長する。
論文 参考訳(メタデータ) (2021-11-09T00:20:01Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
対数要因まで $(varepsilon,delta)$-differently private の最適過剰人口損失は $sqrtlog(d)/n + sqrtd/varepsilon n.$ です。
損失関数がさらなる滑らかさの仮定を満たすとき、余剰損失は$sqrtlog(d)/n + (log(d)/varepsilon n)2/3で上界(対数因子まで)であることが示される。
論文 参考訳(メタデータ) (2021-03-02T06:53:44Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
期待される正方形損失から、最も適合した単一ニューロンを学習することの問題点を考察する。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
論文 参考訳(メタデータ) (2020-05-29T07:20:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。