論文の概要: Better Locally Private Sparse Estimation Given Multiple Samples Per User
- arxiv url: http://arxiv.org/abs/2408.04313v1
- Date: Thu, 8 Aug 2024 08:47:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 16:08:12.640904
- Title: Better Locally Private Sparse Estimation Given Multiple Samples Per User
- Title(参考訳): ユーザ当たりのサンプル数を考慮したローカル・プライベート・スパース推定
- Authors: Yuheng Ma, Ke Jia, Hanfang Yang,
- Abstract要約: ユーザレベルの局所微分プライベートスパース線形回帰について検討する。
我々は、$n$のユーザがそれぞれ$m$のサンプルを提供していれば、$d$の線形依存を排除できることを示した。
本稿では,まず候補変数を選択し,次に狭義の低次元空間で推定を行うフレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.9562742331218725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Previous studies yielded discouraging results for item-level locally differentially private linear regression with $s^*$-sparsity assumption, where the minimax rate for $nm$ samples is $\mathcal{O}(s^{*}d / nm\varepsilon^2)$. This can be challenging for high-dimensional data, where the dimension $d$ is extremely large. In this work, we investigate user-level locally differentially private sparse linear regression. We show that with $n$ users each contributing $m$ samples, the linear dependency of dimension $d$ can be eliminated, yielding an error upper bound of $\mathcal{O}(s^{*2} / nm\varepsilon^2)$. We propose a framework that first selects candidate variables and then conducts estimation in the narrowed low-dimensional space, which is extendable to general sparse estimation problems with tight error bounds. Experiments on both synthetic and real datasets demonstrate the superiority of the proposed methods. Both the theoretical and empirical results suggest that, with the same number of samples, locally private sparse estimation is better conducted when multiple samples per user are available.
- Abstract(参考訳): 従来の研究では、$s^*$-sparsityの仮定でアイテムレベルの局所微分線型回帰に対して、$nm$サンプルの最小値は$\mathcal{O}(s^{*}d / nm\varepsilon^2)$である。
これは、次元$d$が極端に大きい高次元データにとって困難である。
本研究では,ユーザレベルの局所微分型プライベートスパース線形回帰について検討する。
それぞれ$m$のサンプルを提供する$n$のユーザの場合、$d$の線形依存は排除され、エラー上限は$\mathcal{O}(s^{*2} / nm\varepsilon^2)$となる。
本稿では,まず候補変数を選択し,次に狭い低次元空間で推定を行うフレームワークを提案する。
合成データセットと実データセットの両方の実験は、提案手法の優位性を実証している。
理論的および実証的な結果は、同じサンプル数で、複数のサンプルが利用できる場合に、局所的なプライベートスパース推定がより良く行われることを示唆している。
関連論文リスト
- Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
以前の$mathRd上の分布に関する民間推定者は、次元性の呪いに苦しむ。
本稿では,サンプルの複雑さが次元依存性を改善したアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-01T17:59:53Z) - Statistical-Computational Trade-offs for Density Estimation [60.81548752871115]
幅広い種類のデータ構造に対して、それらの境界は著しく改善されないことを示す。
これは密度推定のための新しい統計計算トレードオフである。
論文 参考訳(メタデータ) (2024-10-30T15:03:33Z) - Distribution-Aware Mean Estimation under User-level Local Differential Privacy [5.267844649650687]
ユーザレベルのローカル差分プライバシに基づく平均推定の問題について考察する。
分布認識平均推定アルゴリズムに基づいて、平均推定タスクに対して、最悪の場合のリスクに対して、$M$依存上界を確立する。
論文 参考訳(メタデータ) (2024-10-12T11:57:52Z) - Computational-Statistical Gaps for Improper Learning in Sparse Linear Regression [4.396860522241307]
疎線形回帰の効率的な学習アルゴリズムは, 負のスパイクを持つスパースPCA問題を解くのに有効であることを示す。
我々は,低次および統計的クエリの低い境界を減らしたスパース問題に対して補う。
論文 参考訳(メタデータ) (2024-02-21T19:55:01Z) - Weighted least-squares approximation with determinantal point processes and generalized volume sampling [33.33724208084121]
与えられた$m$-次元空間$V_m$の要素によって、函数を$L2$から近似する問題を考える。
近似は、ほぼ確実に$H$-normで測定された最高の近似誤差によって境界づけられていることを示す。
論文 参考訳(メタデータ) (2023-12-21T17:34:18Z) - Effective Minkowski Dimension of Deep Nonparametric Regression: Function
Approximation and Statistical Theories [70.90012822736988]
ディープ非パラメトリック回帰に関する既存の理論は、入力データが低次元多様体上にある場合、ディープニューラルネットワークは本質的なデータ構造に適応できることを示した。
本稿では,$mathcalS$で表される$mathbbRd$のサブセットに入力データが集中するという緩和された仮定を導入する。
論文 参考訳(メタデータ) (2023-06-26T17:13:31Z) - Data Structures for Density Estimation [66.36971978162461]
p$のサブリニア数($n$)が与えられた場合、主な結果は$k$のサブリニアで$v_i$を識別する最初のデータ構造になります。
また、Acharyaなどのアルゴリズムの改良版も提供します。
論文 参考訳(メタデータ) (2023-06-20T06:13:56Z) - Discrete Distribution Estimation under User-level Local Differential
Privacy [37.65849910114053]
ユーザレベルの局所差分プライバシー(LDP)に基づく離散分布推定について検討する。
ユーザレベルの$varepsilon$-LDPでは、各ユーザは$mge1$サンプルを持ち、すべての$m$サンプルのプライバシを同時に保存する必要がある。
論文 参考訳(メタデータ) (2022-11-07T18:29:32Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。