論文の概要: Empowering Edge Intelligence: A Comprehensive Survey on On-Device AI Models
- arxiv url: http://arxiv.org/abs/2503.06027v1
- Date: Sat, 08 Mar 2025 02:59:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:50:35.298063
- Title: Empowering Edge Intelligence: A Comprehensive Survey on On-Device AI Models
- Title(参考訳): エッジインテリジェンスを強化する - デバイス上のAIモデルに関する総合的な調査
- Authors: Xubin Wang, Zhiqing Tang, Jianxiong Guo, Tianhui Meng, Chenhao Wang, Tian Wang, Weijia Jia,
- Abstract要約: 人工知能(AI)技術の急速な進歩により、エッジと端末デバイスへのAIモデルの展開が増加している。
この調査は、オンデバイスAIモデルの現状、技術的な課題、今後のトレンドを包括的に調査する。
- 参考スコア(独自算出の注目度): 16.16798813072285
- License:
- Abstract: The rapid advancement of artificial intelligence (AI) technologies has led to an increasing deployment of AI models on edge and terminal devices, driven by the proliferation of the Internet of Things (IoT) and the need for real-time data processing. This survey comprehensively explores the current state, technical challenges, and future trends of on-device AI models. We define on-device AI models as those designed to perform local data processing and inference, emphasizing their characteristics such as real-time performance, resource constraints, and enhanced data privacy. The survey is structured around key themes, including the fundamental concepts of AI models, application scenarios across various domains, and the technical challenges faced in edge environments. We also discuss optimization and implementation strategies, such as data preprocessing, model compression, and hardware acceleration, which are essential for effective deployment. Furthermore, we examine the impact of emerging technologies, including edge computing and foundation models, on the evolution of on-device AI models. By providing a structured overview of the challenges, solutions, and future directions, this survey aims to facilitate further research and application of on-device AI, ultimately contributing to the advancement of intelligent systems in everyday life.
- Abstract(参考訳): 人工知能(AI)技術の急速な進歩により、IoT(Internet of Things)の普及とリアルタイムデータ処理の必要性によって、エッジデバイスと端末デバイスにAIモデルが展開されるようになった。
この調査は、オンデバイスAIモデルの現状、技術的な課題、今後のトレンドを包括的に調査する。
我々は、オンデバイスAIモデルを、ローカルなデータ処理と推論を実行するように設計されたモデルとして定義し、リアルタイムパフォーマンス、リソース制約、データプライバシの向上といった特徴を強調した。
この調査は、AIモデルの基本概念、さまざまなドメインにわたるアプリケーションシナリオ、エッジ環境で直面する技術的課題など、重要なテーマを中心に構成されている。
また,データ前処理やモデル圧縮,ハードウェアアクセラレーションなど,効率的なデプロイメントに不可欠な最適化と実装戦略についても論じる。
さらに、エッジコンピューティングやファンデーションモデルを含む新興技術が、オンデバイスAIモデルの進化に与える影響についても検討する。
この調査は、課題、ソリューション、将来の方向性の構造化された概要を提供することで、デバイス上のAIのさらなる研究と応用を促進することを目的としており、最終的には、日常生活におけるインテリジェントなシステムの進歩に寄与する。
関連論文リスト
- Optimizing Edge AI: A Comprehensive Survey on Data, Model, and System Strategies [14.115655986504411]
5Gとエッジコンピューティングハードウェアは、人工知能に大きな変化をもたらした。
リソース制約のあるエッジデバイスに最先端のAIモデルをデプロイすることは、大きな課題に直面している。
本稿では,効率的かつ信頼性の高いエッジAIデプロイメントのための最適化トライアドを提案する。
論文 参考訳(メタデータ) (2025-01-04T06:17:48Z) - Vision Foundation Models in Remote Sensing: A Survey [6.036426846159163]
ファンデーションモデルは、前例のない精度と効率で幅広いタスクを実行することができる大規模で事前訓練されたAIモデルである。
本調査は, 遠隔センシングにおける基礎モデルの開発と応用を継続するために, 進展のパノラマと将来性のある経路を提供することによって, 研究者や実践者の資源として機能することを目的としている。
論文 参考訳(メタデータ) (2024-08-06T22:39:34Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
本稿では,各種深層学習駆動型VAD経路の基本前提,学習フレームワーク,適用シナリオについて述べる。
我々は、産業用IoTおよびスマート都市における最新のNSVAD研究と、デプロイ可能なNSVADのためのエンドクラウド共同アーキテクチャを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - On the Challenges and Opportunities in Generative AI [157.96723998647363]
私たちは、現在の大規模な生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの根本的な欠点を示しています。
我々は、研究者に実りある研究の方向性を探るための洞察を提供することを目標とし、より堅牢でアクセスしやすい生成AIソリューションの開発を促進する。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Which Design Decisions in AI-enabled Mobile Applications Contribute to
Greener AI? [7.194465440864905]
このレポートは、AI対応アプリケーションの性能に対する設計決定の影響を定量化する実証的研究を行う計画で構成されている。
我々は、複数の画像分類とテキスト分類問題を解決するために、モバイルアプリケーションに画像ベースニューラルネットワークと言語ベースニューラルネットワークの両方を実装します。
論文 参考訳(メタデータ) (2021-09-28T07:30:28Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z) - Convergence of Artificial Intelligence and High Performance Computing on
NSF-supported Cyberinfrastructure [3.4291439418246177]
人工知能(AI)アプリケーションは、産業や技術におけるビッグデータの課題に対して、トランスフォーメーションソリューションを推進している。
AIは、統計的および数学的厳密性を備えたコンピューティングパラダイムへと進化し続けており、トレーニング、検証、テストのためのシングルGPUソリューションがもはや不十分であることが明らかになっている。
この実現により、AIとハイパフォーマンスコンピューティングの融合が加速し、監視時間の短縮が図られている。
論文 参考訳(メタデータ) (2020-03-18T18:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。