Multi-view Spectral Clustering on the Grassmannian Manifold With Hypergraph Representation
- URL: http://arxiv.org/abs/2503.06066v1
- Date: Sat, 08 Mar 2025 05:26:53 GMT
- Title: Multi-view Spectral Clustering on the Grassmannian Manifold With Hypergraph Representation
- Authors: Murong Yang, Shihui Ying, Xin-Jian Xu, Yue Gao,
- Abstract summary: We introduce a novel approach to generate hypergraphs by leveraging sparse representation learning from data points.<n>We propose an optimization function with orthogonality constraints for multi-view hypergraph spectral clustering, which incorporates spectral clustering for each view and ensures consistency across different views.<n>To validate the effectiveness of the proposed algorithm, we test it on four real-world multi-view datasets and compare its performance with seven state-of-the-art multi-view clustering algorithms.
- Score: 13.154074955545406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-based multi-view spectral clustering methods have achieved notable progress recently, yet they often fall short in either oversimplifying pairwise relationships or struggling with inefficient spectral decompositions in high-dimensional Euclidean spaces. In this paper, we introduce a novel approach that begins to generate hypergraphs by leveraging sparse representation learning from data points. Based on the generated hypergraph, we propose an optimization function with orthogonality constraints for multi-view hypergraph spectral clustering, which incorporates spectral clustering for each view and ensures consistency across different views. In Euclidean space, solving the orthogonality-constrained optimization problem may yield local maxima and approximation errors. Innovately, we transform this problem into an unconstrained form on the Grassmannian manifold. Finally, we devise an alternating iterative Riemannian optimization algorithm to solve the problem. To validate the effectiveness of the proposed algorithm, we test it on four real-world multi-view datasets and compare its performance with seven state-of-the-art multi-view clustering algorithms. The experimental results demonstrate that our method outperforms the baselines in terms of clustering performance due to its superior low-dimensional and resilient feature representation.
Related papers
- Highly Efficient Rotation-Invariant Spectral Embedding for Scalable Incomplete Multi-View Clustering [41.37759812894945]
We propose a highly efficient rotation-invariant spectral embedding (RISE) method for scalable incomplete multi-view clustering.<n>RISE learns view-specific embeddings from incomplete bipartite graphs to capture the complementary information.<n>We design a fast alternating optimization algorithm with linear complexity and promising convergence to solve the proposed formulation.
arXiv Detail & Related papers (2025-01-21T05:20:02Z) - Revisiting Self-Supervised Heterogeneous Graph Learning from Spectral Clustering Perspective [52.662463893268225]
Self-supervised heterogeneous graph learning (SHGL) has shown promising potential in diverse scenarios.<n>Existing SHGL methods encounter two significant limitations.<n>We introduce a novel framework enhanced by rank and dual consistency constraints.
arXiv Detail & Related papers (2024-12-01T09:33:20Z) - Fast and Scalable Semi-Supervised Learning for Multi-View Subspace Clustering [13.638434337947302]
FSSMSC is a novel solution to the high computational complexity commonly found in existing approaches.
The method generates a consensus anchor graph across all views, representing each data point as a sparse linear combination of chosen landmarks.
The effectiveness and efficiency of FSSMSC are validated through extensive experiments on multiple benchmark datasets of varying scales.
arXiv Detail & Related papers (2024-08-11T06:54:00Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
We develop a novel multi-view clustering based on semi-non-negative tensor factorization (Semi-NTF)
Our model directly considers the between-view relationship and exploits the between-view complementary information.
In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point.
arXiv Detail & Related papers (2023-03-29T14:54:19Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Nonbacktracking spectral clustering of nonuniform hypergraphs [2.408714894793063]
We study spectral clustering for nonuniform hypergraphs based on the hypergraph nonbacktracking operator.
We propose an alternating algorithm for inference in a hypergraph blockmodel via linearized belief-propagation.
arXiv Detail & Related papers (2022-04-27T01:14:06Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.