Nonbacktracking spectral clustering of nonuniform hypergraphs
- URL: http://arxiv.org/abs/2204.13586v1
- Date: Wed, 27 Apr 2022 01:14:06 GMT
- Title: Nonbacktracking spectral clustering of nonuniform hypergraphs
- Authors: Philip Chodrow, Nicole Eikmeier, and Jamie Haddock
- Abstract summary: We study spectral clustering for nonuniform hypergraphs based on the hypergraph nonbacktracking operator.
We propose an alternating algorithm for inference in a hypergraph blockmodel via linearized belief-propagation.
- Score: 2.408714894793063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spectral methods offer a tractable, global framework for clustering in graphs
via eigenvector computations on graph matrices. Hypergraph data, in which
entities interact on edges of arbitrary size, poses challenges for matrix
representations and therefore for spectral clustering. We study spectral
clustering for nonuniform hypergraphs based on the hypergraph nonbacktracking
operator. After reviewing the definition of this operator and its basic
properties, we prove a theorem of Ihara-Bass type to enable faster computation
of eigenpairs. We then propose an alternating algorithm for inference in a
hypergraph stochastic blockmodel via linearized belief-propagation, offering
proofs that both formalize and extend several previous results. We perform
experiments in real and synthetic data that underscore the benefits of
hypergraph methods over graph-based ones when interactions of different sizes
carry different information about cluster structure. Through an analysis of our
algorithm, we pose several conjectures about the limits of spectral methods and
detectability in hypergraph stochastic blockmodels writ large.
Related papers
- Interpretable Multi-View Clustering Based on Anchor Graph Tensor Factorization [64.00146569922028]
Multi-view clustering methods based on anchor graph factorization lack adequate cluster interpretability for the decomposed matrix.
We address this limitation by using non-negative tensor factorization to decompose an anchor graph tensor that combines anchor graphs from multiple views.
arXiv Detail & Related papers (2024-04-01T03:23:55Z) - Graph Generation via Spectral Diffusion [51.60814773299899]
We present GRASP, a novel graph generative model based on 1) the spectral decomposition of the graph Laplacian matrix and 2) a diffusion process.
Specifically, we propose to use a denoising model to sample eigenvectors and eigenvalues from which we can reconstruct the graph Laplacian and adjacency matrix.
Our permutation invariant model can also handle node features by concatenating them to the eigenvectors of each node.
arXiv Detail & Related papers (2024-02-29T09:26:46Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
arXiv Detail & Related papers (2024-01-31T09:31:28Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Hypergraphs with Edge-Dependent Vertex Weights: p-Laplacians and
Spectral Clustering [29.400924845055865]
We study p-Laplacians and spectral clustering for a recently proposed hypergraph model that incorporates edge-dependent weights (EDVWs)
We convert hypergraphs with EDVWs into submodular hypergraphs for which the spectral theory is better developed.
Existing concepts and theorems such as p-Laplacians and Cheeger inequalities proposed under the submodular hypergraph setting can be directly extended to hypergraphs with EDVWs.
arXiv Detail & Related papers (2022-08-15T22:29:00Z) - HyperSF: Spectral Hypergraph Coarsening via Flow-based Local Clustering [9.438207505148947]
We propose an efficient spectral hypergraph coarsening scheme (HyperSF) for preserving the original spectral (structural) properties of hypergraphs.
Our results show that the proposed hypergraph coarsening algorithm can significantly improve the multi-way conductance of hypergraph clustering.
arXiv Detail & Related papers (2021-08-17T22:20:23Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Generative hypergraph clustering: from blockmodels to modularity [26.99290024958576]
We propose an expressive generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes.
We show that hypergraph Louvain is highly scalable, including as an example an experiment on a synthetic hypergraph of one million nodes.
We use our model to analyze different patterns of higher-order structure in school contact networks, U.S. congressional bill cosponsorship, U.S. congressional committees, product categories in co-purchasing behavior, and hotel locations.
arXiv Detail & Related papers (2021-01-24T00:25:22Z) - Scaling Graph Clustering with Distributed Sketches [1.1011268090482575]
We present a method inspired by spectral clustering where we instead use matrix sketches derived from random dimension-reducing projections.
We show that our method produces embeddings that yield performant clustering results given a fully-dynamic block model stream.
We also discuss the effects of block model parameters upon the required dimensionality of the subsequent embeddings, and show how random projections could significantly improve the performance of graph clustering in distributed memory.
arXiv Detail & Related papers (2020-07-24T17:38:04Z) - Hypergraph Random Walks, Laplacians, and Clustering [9.488853155989615]
We propose a flexible framework for clustering hypergraph-structured data based on recently proposed random walks.
We show that the proposed methods produce higher-quality clusters and conclude by highlighting avenues for future work.
arXiv Detail & Related papers (2020-06-29T20:58:15Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.