論文の概要: Secure On-Device Video OOD Detection Without Backpropagation
- arxiv url: http://arxiv.org/abs/2503.06166v1
- Date: Sat, 08 Mar 2025 11:03:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:50:17.215047
- Title: Secure On-Device Video OOD Detection Without Backpropagation
- Title(参考訳): バックプロパゲーションのないセキュアなオンデバイスビデオOOD検出
- Authors: Li Li, Peilin Cai, Yuxiao Zhou, Zhiyu Ni, Renjie Liang, You Qin, Yi Nian, Zhengzhong Tu, Xiyang Hu, Yue Zhao,
- Abstract要約: アウト・オブ・ディストリビューション(OOD)検出は、自律運転や診断などの安全クリティカルなアプリケーションにおいて、機械学習モデルの信頼性を確保するために重要である。
デバイス側のバックプロパゲーションを必要とせず,デバイス上でのOOD検出を効率的に行うセキュアなクラウドデバイスコラボレーションフレームワークSecDOODを提案する。
- 参考スコア(独自算出の注目度): 14.52975513234688
- License:
- Abstract: Out-of-Distribution (OOD) detection is critical for ensuring the reliability of machine learning models in safety-critical applications such as autonomous driving and medical diagnosis. While deploying personalized OOD detection directly on edge devices is desirable, it remains challenging due to large model sizes and the computational infeasibility of on-device training. Federated learning partially addresses this but still requires gradient computation and backpropagation, exceeding the capabilities of many edge devices. To overcome these challenges, we propose SecDOOD, a secure cloud-device collaboration framework for efficient on-device OOD detection without requiring device-side backpropagation. SecDOOD utilizes cloud resources for model training while ensuring user data privacy by retaining sensitive information on-device. Central to SecDOOD is a HyperNetwork-based personalized parameter generation module, which adapts cloud-trained models to device-specific distributions by dynamically generating local weight adjustments, effectively combining central and local information without local fine-tuning. Additionally, our dynamic feature sampling and encryption strategy selectively encrypts only the most informative feature channels, largely reducing encryption overhead without compromising detection performance. Extensive experiments across multiple datasets and OOD scenarios demonstrate that SecDOOD achieves performance comparable to fully fine-tuned models, enabling secure, efficient, and personalized OOD detection on resource-limited edge devices. To enhance accessibility and reproducibility, our code is publicly available at https://github.com/Dystopians/SecDOOD.
- Abstract(参考訳): アウト・オブ・ディストリビューション(OOD)検出は、自律運転や診断などの安全クリティカルなアプリケーションにおいて、機械学習モデルの信頼性を確保するために重要である。
エッジデバイスに直接、パーソナライズされたOOD検出をデプロイすることが望ましいが、大きなモデルサイズとオンデバイストレーニングの計算不可能さのため、依然として困難である。
フェデレーション学習はこの問題に部分的に対処するが、多くのエッジデバイスの能力を上回る勾配計算とバックプロパゲーションを必要とする。
これらの課題を克服するために,デバイス側のバックプロパゲーションを必要とせず,デバイス上でのOOD検出を効率的に行うセキュアなクラウドデバイスコラボレーションフレームワークSecDOODを提案する。
SecDOODはクラウドリソースをモデルトレーニングに利用し、デバイス上で機密情報を保持してユーザのデータプライバシを確保する。
Central to SecDOODはHyperNetworkベースのパーソナライズされたパラメータ生成モジュールで、局所的な重量調整を動的に生成することで、クラウドトレーニングされたモデルをデバイス固有の分散に適応し、局所的な微調整なしで、中央情報と局所情報を効果的に結合する。
さらに、我々の動的特徴サンプリングおよび暗号化戦略は、最も情報性の高い特徴チャネルのみを選択的に暗号化し、検出性能を損なうことなく、暗号化オーバーヘッドを大幅に削減する。
複数のデータセットとOODシナリオにわたる大規模な実験は、SecDOODが完全に調整されたモデルに匹敵するパフォーマンスを実現し、リソース制限されたエッジデバイス上でセキュアで効率的でパーソナライズされたOOD検出を可能にすることを実証している。
アクセシビリティと再現性を高めるため、私たちのコードはhttps://github.com/Dystopians/SecDOOD.comで公開されています。
関連論文リスト
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
アウト・オブ・ディストリビューション(OOD)オブジェクト検出は、オープンセットのOODデータがないため、難しい課題である。
テキストから画像への生成モデルの最近の進歩に触発されて,大規模オープンセットデータを用いて訓練された生成モデルがOODサンプルを合成する可能性について検討した。
SyncOODは,大規模基盤モデルの能力を活用するシンプルなデータキュレーション手法である。
論文 参考訳(メタデータ) (2024-09-08T17:28:22Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Can Pre-trained Networks Detect Familiar Out-of-Distribution Data? [37.36999826208225]
PT-OODが事前学習ネットワークのOOD検出性能に及ぼす影響について検討した。
特徴空間におけるPT-OODの低線形分離性はPT-OOD検出性能を著しく低下させることがわかった。
本稿では,大規模事前学習モデルに対する一意な解を提案する。
論文 参考訳(メタデータ) (2023-10-02T02:01:00Z) - Sparse Federated Training of Object Detection in the Internet of
Vehicles [13.864554148921826]
物体検出は、IoV(Internet of Vehicles)の鍵となる技術の一つである
現在のオブジェクト検出方法は、主に集中的な深層トレーニングに基づいており、エッジデバイスが取得したセンシティブなデータをサーバにアップロードする必要がある。
そこで本研究では,よく訓練されたローカルモデルを中央サーバで共有する,フェデレート学習ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-07T08:58:41Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
オープンソースアプリケーションに機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
我々は、未ラベルのオンラインデータをテスト時に直接利用してOOD検出性能を向上させる、テスト時OOD検出と呼ばれる新しいパラダイムを導入する。
本稿では,入出力フィルタ,IDメモリバンク,意味的に一貫性のある目的からなる適応外乱最適化(AUTO)を提案する。
論文 参考訳(メタデータ) (2023-03-22T02:28:54Z) - An Online Ensemble Learning Model for Detecting Attacks in Wireless
Sensor Networks [0.0]
我々は、アンサンブル学習として知られる重要な機械学習の概念を適用して、インテリジェントで効率的で、かつ、高機能な侵入検知システムを開発する。
本稿では,感覚データ解析における同種・異種のオンラインアンサンブルの応用について検討する。
提案されたオンラインアンサンブルのうち、アダプティブ・ランダム・フォレスト(ARF)とHoeffding Adaptive Tree(HAT)アルゴリズムを組み合わせた異種アンサンブルと、10モデルからなる同種アンサンブルHATは、それぞれ96.84%と97.2%という高い検出率を達成した。
論文 参考訳(メタデータ) (2022-04-28T23:10:47Z) - EARLIN: Early Out-of-Distribution Detection for Resource-efficient
Collaborative Inference [4.826988182025783]
協調推論により、リソース制約のあるエッジデバイスは、入力をサーバにアップロードすることで推論を行うことができる。
このセットアップは、成功した推論のためにコスト効率よく機能するが、モデルがトレーニングされていない入力サンプルに直面すると、非常にパフォーマンスが低下する。
我々は,事前訓練されたCNNモデルの浅い層から重要な特徴を抽出する,新しい軽量OOD検出手法を提案する。
論文 参考訳(メタデータ) (2021-06-25T18:43:23Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)データに対する高い過度な予測を生成することが知られている。
本稿では,認証可能なOOD検出器を標準分類器と組み合わせてOOD認識分類器を提案する。
このようにして、我々は2つの世界のベストを達成している。OOD検出は、分布内に近いOODサンプルであっても、予測精度を損なうことなく、非操作型OODデータに対する最先端のOOD検出性能に近接する。
論文 参考訳(メタデータ) (2021-06-08T11:40:49Z) - Out-of-Distribution Detection for Automotive Perception [58.34808836642603]
ニューラルネットワーク(NN)は、自律運転におけるオブジェクト分類に広く使われている。
NNは、アウト・オブ・ディストリビューション(OOD)データとして知られるトレーニングデータセットで適切に表現されていない入力データでフェールすることができる。
本稿では,OODデータを必要としない入力がOODであるか否かを判定し,推論の計算コストを増大させる方法を提案する。
論文 参考訳(メタデータ) (2020-11-03T01:46:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。