論文の概要: A Frank System for Co-Evolutionary Hybrid Decision-Making
- arxiv url: http://arxiv.org/abs/2503.06229v1
- Date: Sat, 08 Mar 2025 14:06:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:53:25.390672
- Title: A Frank System for Co-Evolutionary Hybrid Decision-Making
- Title(参考訳): 共進化型ハイブリッド意思決定のためのフランクシステム
- Authors: Federico Mazzoni, Riccardo Guidotti, Alessio Malizia,
- Abstract要約: 我々は,共同進化型ハイブリッド意思決定のためのヒューマン・イン・ザ・ループシステムであるFrankを紹介する。
不整合制御、説明、公平性チェック、不正な保護を同時に提供します。
実験の結果、フランクの介入が決定の正確さと公平性の改善につながることが示された。
- 参考スコア(独自算出の注目度): 5.434628844260993
- License:
- Abstract: We introduce Frank, a human-in-the-loop system for co-evolutionary hybrid decision-making aiding the user to label records from an un-labeled dataset. Frank employs incremental learning to ``evolve'' in parallel with the user's decisions, by training an interpretable machine learning model on the records labeled by the user. Furthermore, Frank advances state-of-the-art approaches by offering inconsistency controls, explanations, fairness checks, and bad-faith safeguards simultaneously. We evaluate our proposal by simulating the users' behavior with various levels of expertise and reliance on Frank's suggestions. The experiments show that Frank's intervention leads to improvements in the accuracy and the fairness of the decisions.
- Abstract(参考訳): 我々はFrankを紹介した。Frankは、未ラベルデータセットからのレコードのラベル付けを支援する共進化型ハイブリッド意思決定システムである。
Frank氏は、ユーザがラベル付けしたレコード上で解釈可能な機械学習モデルをトレーニングすることで、ユーザの判断と並行して‘evolve’をインクリメンタルに学習する。
さらにフランクは、一貫性のない制御、説明、公平性チェック、不正な保護を同時に提供することによって、最先端のアプローチを推し進めている。
提案手法は,フランクの提案に依拠し,様々なレベルの専門知識でユーザの行動をシミュレートすることで評価する。
実験の結果、フランクの介入が決定の正確さと公平性の改善につながることが示された。
関連論文リスト
- Value Function Decomposition in Markov Recommendation Process [19.082512423102855]
本稿では,レコメンダ性能を向上させるためのオンライン強化学習フレームワークを提案する。
これらの2つの因子は、元の時間差損失を分解することで、別々に近似できることを示す。
アンタングル学習フレームワークは、より高速な学習と、アクション探索に対する堅牢性の向上により、より正確な推定を実現することができる。
論文 参考訳(メタデータ) (2025-01-29T04:22:29Z) - Federated Behavioural Planes: Explaining the Evolution of Client Behaviour in Federated Learning [6.64590374742412]
FLシステムの力学を解析・可視化・説明するための新しい手法であるFBP(Federated Behavioural Planes)を紹介する。
我々の実験は、FBPがクライアントの進化状態を記述した情報トラジェクトリを提供することを示した。
我々は、悪意のあるクライアントモデルやノイズの多いクライアントモデルを検出するために、Federated Behavioural Shieldsという名前のロバストアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T15:17:51Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - Selective Knowledge Sharing for Privacy-Preserving Federated
Distillation without A Good Teacher [52.2926020848095]
フェデレーション学習は、ホワイトボックス攻撃に脆弱で、異種クライアントへの適応に苦慮している。
本稿では,選択的FD(Selective-FD)と呼ばれるFDのための選択的知識共有機構を提案する。
論文 参考訳(メタデータ) (2023-04-04T12:04:19Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - Evaluation of Self-taught Learning-based Representations for Facial
Emotion Recognition [62.30451764345482]
この研究は、顔の感情認識のための自己学習の概念を通じて得られた教師なし表現を生成するための様々な戦略を記述する。
このアイデアは、オートエンコーダの初期化、アーキテクチャ、トレーニングデータを変化させることで、多様性を促進する補完的な表現を作ることである。
Jaffe と Cohn-Kanade のデータセットに対する残余のサブジェクトアウトプロトコルによる実験結果から,提案した多種多様な表現に基づく FER 手法が最先端のアプローチと好適に比較できることが示唆された。
論文 参考訳(メタデータ) (2022-04-26T22:48:15Z) - Cooperative learning for multi-view analysis [2.368995563245609]
複数機能セットを用いた教師あり学習手法(ビュー)を提案する。
協調学習は、予測の通常の正方形エラー損失と、異なるデータビューからの予測に同意するよう奨励する"集積"ペナルティを組み合わせる。
シミュレーションおよび実データ例における提案手法の有効性について述べる。
論文 参考訳(メタデータ) (2021-12-23T03:13:25Z) - Blockchain-based Trustworthy Federated Learning Architecture [16.062545221270337]
ブロックチェーンベースの信頼できるフェデレーション学習アーキテクチャを提案する。
まず、説明責任を実現するために、スマートコントラクトベースのデータモデル証明レジストリを設計する。
また、トレーニングデータの公平性を高めるために、重み付き公正データサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-16T06:13:58Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
ロングテール認識の主な課題は、データ分布の不均衡とテールクラスにおけるサンプル不足である。
半教師付き長尾認識という新しい認識設定を提案する。
2つのデータセットで、他の競合方法よりも大幅な精度向上を実証します。
論文 参考訳(メタデータ) (2021-05-01T00:43:38Z) - FedeRank: User Controlled Feedback with Federated Recommender Systems [4.474834288759608]
データプライバシーは、デジタル時代の最も顕著な懸念の1つです。
我々はプライバシ保護の分散機械学習パラダイムであるFedeRankを紹介する。
また,FedeRankの有効性を,共有ユーザデータのごく一部であっても,推薦精度の観点から示す。
論文 参考訳(メタデータ) (2020-12-15T22:26:54Z) - Improving Conversational Question Answering Systems after Deployment
using Feedback-Weighted Learning [69.42679922160684]
本稿では,二元的ユーザフィードバックを用いた初期教師付きシステムを改善するために,重要サンプリングに基づくフィードバック重み付き学習を提案する。
当社の作業は,実際のユーザとのインタラクションを活用し,デプロイ後の会話システムを改善する可能性を開くものだ。
論文 参考訳(メタデータ) (2020-11-01T19:50:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。