Swift Hydra: Self-Reinforcing Generative Framework for Anomaly Detection with Multiple Mamba Models
- URL: http://arxiv.org/abs/2503.06413v2
- Date: Tue, 25 Mar 2025 02:53:03 GMT
- Title: Swift Hydra: Self-Reinforcing Generative Framework for Anomaly Detection with Multiple Mamba Models
- Authors: Nguyen Do, Truc Nguyen, Malik Hassanaly, Raed Alharbi, Jung Taek Seo, My T. Thai,
- Abstract summary: This paper introduces Swift Hydra, a new framework for training an anomaly detection method based on generative AI and reinforcement learning (RL)<n>Through featuring an RL policy that operates on the latent variables of a generative model, the framework synthesizes novel and diverse anomaly samples that are capable of bypassing a detection model.<n>Swift Hydra also incorporates Mamba models structured as a Mixture of Experts (MoE) to enable scalable adaptation of the number of Mamba experts.
- Score: 12.88243863886685
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite a plethora of anomaly detection models developed over the years, their ability to generalize to unseen anomalies remains an issue, particularly in critical systems. This paper aims to address this challenge by introducing Swift Hydra, a new framework for training an anomaly detection method based on generative AI and reinforcement learning (RL). Through featuring an RL policy that operates on the latent variables of a generative model, the framework synthesizes novel and diverse anomaly samples that are capable of bypassing a detection model. These generated synthetic samples are, in turn, used to augment the detection model, further improving its ability to handle challenging anomalies. Swift Hydra also incorporates Mamba models structured as a Mixture of Experts (MoE) to enable scalable adaptation of the number of Mamba experts based on data complexity, effectively capturing diverse feature distributions without increasing the model's inference time. Empirical evaluations on ADBench benchmark demonstrate that Swift Hydra outperforms other state-of-the-art anomaly detection models while maintaining a relatively short inference time. From these results, our research highlights a new and auspicious paradigm of integrating RL and generative AI for advancing anomaly detection.
Related papers
- GenIAS: Generator for Instantiating Anomalies in time Series [54.959865643340535]
We develop a generative model for time series anomaly detection (TSAD) using a variational autoencoder.<n>GenIAS is designed to produce diverse and realistic synthetic anomalies for TSAD tasks.<n>Our experiments demonstrate that GenIAS consistently outperforms seventeen traditional and deep anomaly detection models.
arXiv Detail & Related papers (2025-02-12T10:10:04Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Synthetic outlier generation for anomaly detection in autonomous driving [1.0989593035411862]
Anomaly detection is crucial to identify instances that significantly deviate from established patterns or the majority of data.
In this study, we explore different strategies for training an image semantic segmentation model with an anomaly detection module.
By introducing modifications to the training stage of the state-of-the-art DenseHybrid model, we achieve significant performance improvements in anomaly detection.
arXiv Detail & Related papers (2023-08-04T07:55:32Z) - Time Series Anomaly Detection via Reinforcement Learning-Based Model
Selection [3.1692938090731584]
Time series anomaly detection is of critical importance for the reliable and efficient operation of real-world systems.
In this work, we assume that a pool of anomaly detection models is accessible and propose to utilize reinforcement learning to dynamically select a candidate model.
It is demonstrated that the proposed strategy can outperforms all baseline models in terms of overall performance.
arXiv Detail & Related papers (2022-05-19T22:10:35Z) - Ensemble neuroevolution based approach for multivariate time series
anomaly detection [0.0]
In this work, a framework is shown which incorporates neuroevolution methods to boost the anomaly-detection scores of new and already known models.
The proposed framework shows that it is possible to boost most of the anomaly detection deep learning models in a reasonable time and a fully automated mode.
arXiv Detail & Related papers (2021-08-08T07:55:07Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.