Time Series Anomaly Detection via Reinforcement Learning-Based Model
Selection
- URL: http://arxiv.org/abs/2205.09884v2
- Date: Mon, 23 May 2022 14:02:08 GMT
- Title: Time Series Anomaly Detection via Reinforcement Learning-Based Model
Selection
- Authors: Jiuqi Elise Zhang, Di Wu, Benoit Boulet
- Abstract summary: Time series anomaly detection is of critical importance for the reliable and efficient operation of real-world systems.
In this work, we assume that a pool of anomaly detection models is accessible and propose to utilize reinforcement learning to dynamically select a candidate model.
It is demonstrated that the proposed strategy can outperforms all baseline models in terms of overall performance.
- Score: 3.1692938090731584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series anomaly detection is of critical importance for the reliable and
efficient operation of real-world systems. Many anomaly detection models have
been developed throughout the years based on various assumptions regarding
anomaly characteristics. However, due to the complex nature of real-world data,
different anomalies within a time series usually have diverse profiles
supporting different anomaly assumptions, making it difficult to find a single
anomaly detector that can consistently beat all other models. In this work, to
harness the benefits of different base models, we assume that a pool of anomaly
detection models is accessible and propose to utilize reinforcement learning to
dynamically select a candidate model from these base models. Experiments on
real-world data have been implemented. It is demonstrated that the proposed
strategy can outperforms all baseline models in terms of overall performance.
Related papers
- Joint Selective State Space Model and Detrending for Robust Time Series Anomaly Detection [25.60381244912307]
Deep learning-based sequence models are extensively employed in Time Series Anomaly Detection tasks.
The ability of TSAD is limited by two key challenges: (i) the ability to model long-range dependency and (ii) the generalization issue in the presence of non-stationary data.
arXiv Detail & Related papers (2024-05-30T08:31:18Z) - Synthetic outlier generation for anomaly detection in autonomous driving [1.0989593035411862]
Anomaly detection is crucial to identify instances that significantly deviate from established patterns or the majority of data.
In this study, we explore different strategies for training an image semantic segmentation model with an anomaly detection module.
By introducing modifications to the training stage of the state-of-the-art DenseHybrid model, we achieve significant performance improvements in anomaly detection.
arXiv Detail & Related papers (2023-08-04T07:55:32Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Time Series Anomaly Detection with label-free Model Selection [0.6303112417588329]
We propose LaF-AD, a novel anomaly detection algorithm with label-free model selection for unlabeled times-series data.
Our algorithm is easily parallelizable, more robust for ill-conditioned and seasonal data, and highly scalable for a large number of anomaly models.
arXiv Detail & Related papers (2021-06-11T00:21:06Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - A Survey on Principles, Models and Methods for Learning from Irregularly
Sampled Time Series [18.224344440110862]
Irregularly sampled time series data arise naturally in many application domains including biology, ecology, climate science, astronomy, and health.
We first describe several axes along which approaches to learning from irregularly sampled time series differ.
We then survey the recent literature organized primarily along the axis of modeling primitives.
arXiv Detail & Related papers (2020-11-30T23:41:47Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.