論文の概要: Physics-Informed Residual Neural Ordinary Differential Equations for Enhanced Tropical Cyclone Intensity Forecasting
- arxiv url: http://arxiv.org/abs/2503.06436v1
- Date: Sun, 09 Mar 2025 04:23:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:46:30.079632
- Title: Physics-Informed Residual Neural Ordinary Differential Equations for Enhanced Tropical Cyclone Intensity Forecasting
- Title(参考訳): 拡張熱帯サイクロン強度予測のための物理インフォームド残差分式
- Authors: Fan Meng,
- Abstract要約: 本研究では,熱帯性サイクロンの強度変化を正確に予測するための物理インフォームド残差正規微分方程式モデルを提案する。
PIR-NODEモデルは,従来の統計モデルやベンチマークディープラーニング手法と比較して,24時間強度予測精度を大幅に向上させる。
本研究では、PIR-NODEモデルアーキテクチャ、物理インフォームド統合戦略、総合的な実験的検証について詳述する。
- 参考スコア(独自算出の注目度): 10.68223611630852
- License:
- Abstract: Accurate tropical cyclone (TC) intensity prediction is crucial for mitigating storm hazards, yet its complex dynamics pose challenges to traditional methods. Here, we introduce a Physics-Informed Residual Neural Ordinary Differential Equation (PIR-NODE) model to precisely forecast TC intensity evolution. This model leverages the powerful non-linear fitting capabilities of deep learning, integrates residual connections to enhance model depth and training stability, and explicitly models the continuous temporal evolution of TC intensity using Neural ODEs. Experimental results in the SHIPS dataset demonstrate that the PIR-NODE model achieves a significant improvement in 24-hour intensity prediction accuracy compared to traditional statistical models and benchmark deep learning methods, with a 25. 2\% reduction in the root mean square error (RMSE) and a 19.5\% increase in R-square (R2) relative to a baseline of neural network. Crucially, the residual structure effectively preserves initial state information, and the model exhibits robust generalization capabilities. This study details the PIR-NODE model architecture, physics-informed integration strategies, and comprehensive experimental validation, revealing the substantial potential of deep learning techniques in predicting complex geophysical systems and laying the foundation for future refined TC forecasting research.
- Abstract(参考訳): 正確な熱帯性サイクロン(TC)強度予測は、嵐の危険性を緩和するために重要であるが、その複雑な力学は従来の手法に課題をもたらす。
本稿では,物理インフォームド残差正規微分方程式(PIR-NODE)モデルを導入し,TC強度の進化を正確に予測する。
このモデルは、ディープラーニングの強力な非線形フィッティング機能を活用し、残差接続を統合してモデル深度とトレーニング安定性を高め、ニューラルODEを用いたTC強度の連続時間進化を明示的にモデル化する。
実験の結果,従来の統計モデルやベンチマーク深層学習手法と比較して,PIR-NODEモデルでは24時間強度予測精度が25。
2\%の根平均二乗誤差(RMSE)が減少し、ニューラルネットワークのベースラインに対して19.5\%のR-二乗誤差(R2)が増加した。
重要なことに、残余構造は初期状態情報を効果的に保存し、モデルは堅牢な一般化能力を示す。
本研究は、PIR-NODEモデルアーキテクチャ、物理情報統合戦略、総合的な実験的検証について詳述し、複雑な物理系の予測における深層学習技術の潜在可能性を明らかにし、将来の洗練されたTC予測研究の基礎を築き上げている。
関連論文リスト
- Comparison of CNN-based deep learning architectures for unsteady CFD acceleration on small datasets [0.0]
本研究では、非定常計算流体力学(CFD)シミュレーションを高速化するための高度な畳み込みニューラルネットワーク(CNN)アーキテクチャの比較を行った。
CNNは, 自己回帰時系列予測において, 予測精度とロバスト性を決定するために, 同一条件下で評価された。
ConvLSTM-UNetは、特に差値計算において、より低い最大誤差と安定した残差を達成する他のモデルよりも一貫して優れていた。
論文 参考訳(メタデータ) (2025-02-06T03:30:49Z) - Efficient Frequency Selective Surface Analysis via End-to-End Model-Based Learning [2.66269503676104]
本稿では、高次元周波数選択面(FSS)の効率的な電磁解析のための革新的なエンドツーエンドモデルに基づくディープラーニング手法を提案する。
大規模なデータセットを必要とする従来のデータ駆動手法とは異なり、このアプローチは等価回路モデルからの物理的な洞察とディープラーニング技術を組み合わせて、モデルの複雑さを著しく低減し、予測精度を高める。
論文 参考訳(メタデータ) (2024-10-22T07:27:20Z) - Adversarial Learning for Neural PDE Solvers with Sparse Data [4.226449585713182]
本研究では,ロバストトレーニングのためのシステムモデル拡張(Systematic Model Augmentation for Robust Training)という,ニューラルネットワークPDEの普遍的学習戦略を紹介する。
モデルの弱点に挑戦し改善することに集中することにより、SMARTはデータスカース条件下でのトレーニング中の一般化エラーを低減する。
論文 参考訳(メタデータ) (2024-09-04T04:18:25Z) - Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks [17.91230192726962]
本稿では,時空間力学を推定する物理誘導型ニューラルネットワークを提案する。
また、物理状態をより正確にモデル化するための物理制約付き適応二階ルンゲ・クッタ法を提案する。
我々のモデルは最先端の手法より優れ、より少ないパラメータ数でデータセットで最高の性能を発揮する。
論文 参考訳(メタデータ) (2024-05-23T12:39:49Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Optimized ensemble deep learning framework for scalable forecasting of
dynamics containing extreme events [0.0]
2つの機械学習技術は、モデルの精度、安定性、スケーラビリティを相乗的に改善し、ダイナミクスの予測において新しい応用の波を促すために共同で使用される。
フィードフォワードニューラルネットワーク、貯水池コンピューティング、長期記憶の最良の凸結合に基づくOEDLモデルは、極端な事象からなるダイナミクスの予測を前進させる上で重要な役割を果たす。
論文 参考訳(メタデータ) (2021-06-09T10:59:41Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Model-Based Robust Deep Learning: Generalizing to Natural,
Out-of-Distribution Data [104.69689574851724]
本稿では,摂動に基づく逆方向の強靭性からモデルに基づく頑健な深層学習へのパラダイムシフトを提案する。
我々の目標は、深層ニューラルネットワークを訓練し、データの自然な変動に対して堅牢にするための一般的なトレーニングアルゴリズムを提供することです。
論文 参考訳(メタデータ) (2020-05-20T13:46:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。