Quantum Graph Convolutional Networks Based on Spectral Methods
- URL: http://arxiv.org/abs/2503.06447v1
- Date: Sun, 09 Mar 2025 05:08:15 GMT
- Title: Quantum Graph Convolutional Networks Based on Spectral Methods
- Authors: Zi Ye, Kai Yu, Song Lin,
- Abstract summary: Graph Convolutional Networks (GCNs) are specialized neural networks for feature extraction from graph-structured data.<n>This paper introduces an enhancement to GCNs based on spectral methods by integrating quantum computing techniques.
- Score: 10.250921033123152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Networks (GCNs) are specialized neural networks for feature extraction from graph-structured data. In contrast to traditional convolutional networks, GCNs offer distinct advantages when processing irregular data, which is ubiquitous in real-world applications. This paper introduces an enhancement to GCNs based on spectral methods by integrating quantum computing techniques. Specifically, a quantum approach is employed to construct the Laplacian matrix, and phase estimation is used to extract the corresponding eigenvectors efficiently. Additionally, quantum parallelism is leveraged to accelerate the convolution operations, thereby improving the efficiency of feature extraction. The findings of this study demonstrate the feasibility of employing quantum computing principles and algorithms to optimize classical GCNs. Theoretical analysis further reveals that, compared to classical methods, the proposed quantum algorithm achieves exponential speedup concerning the number of nodes in the graph.
Related papers
- Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
We propose a quantum circuit-based algorithm to implement quantum residual neural networks (QResNets)
Our work lays the foundation for a complete quantum implementation of the classical residual neural networks.
arXiv Detail & Related papers (2024-01-29T04:00:51Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
We investigate NTKs and alignment in the context of graph neural networks (GNNs)
Our results establish the theoretical guarantees on the optimality of the alignment for a two-layer GNN.
These guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data.
arXiv Detail & Related papers (2023-10-16T19:54:21Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.<n>We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML.<n>The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum-inspired event reconstruction with Tensor Networks: Matrix
Product States [0.0]
We show that Networks are ideal vehicles to connect quantum mechanical concepts to machine learning techniques.
We show that entanglement entropy can be used to interpret what a network learns.
arXiv Detail & Related papers (2021-06-15T18:00:02Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - A Derivative-free Method for Quantum Perceptron Training in
Multi-layered Neural Networks [2.962453125262748]
gradient-free approach for training multi-layered neural networks based upon quantum perceptrons.
We make use of measurable operators to define the states of the network in a manner consistent with a Markov process.
arXiv Detail & Related papers (2020-09-23T01:38:34Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Scattering GCN: Overcoming Oversmoothness in Graph Convolutional
Networks [0.0]
Graph convolutional networks (GCNs) have shown promising results in processing graph data by extracting structure-aware features.
Here, we propose to augment conventional GCNs with geometric scattering transforms and residual convolutions.
The former enables band-pass filtering of graph signals, thus alleviating the so-called oversmoothing often encountered in GCNs.
arXiv Detail & Related papers (2020-03-18T18:03:08Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
Graph convolutional neural networks(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification.
We propose a GP regression model via GCNs(GPGC) for graph-based semi-supervised learning.
We conduct extensive experiments to evaluate GPGC and demonstrate that it outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2020-02-26T10:02:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.