A Derivative-free Method for Quantum Perceptron Training in
Multi-layered Neural Networks
- URL: http://arxiv.org/abs/2009.13264v1
- Date: Wed, 23 Sep 2020 01:38:34 GMT
- Title: A Derivative-free Method for Quantum Perceptron Training in
Multi-layered Neural Networks
- Authors: Tariq M. Khan and Antonio Robles-Kelly
- Abstract summary: gradient-free approach for training multi-layered neural networks based upon quantum perceptrons.
We make use of measurable operators to define the states of the network in a manner consistent with a Markov process.
- Score: 2.962453125262748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a gradient-free approach for training multi-layered
neural networks based upon quantum perceptrons. Here, we depart from the
classical perceptron and the elemental operations on quantum bits, i.e. qubits,
so as to formulate the problem in terms of quantum perceptrons. We then make
use of measurable operators to define the states of the network in a manner
consistent with a Markov process. This yields a Dirac-Von Neumann formulation
consistent with quantum mechanics. Moreover, the formulation presented here has
the advantage of having a computational efficiency devoid of the number of
layers in the network. This, paired with the natural efficiency of quantum
computing, can imply a significant improvement in efficiency, particularly for
deep networks. Finally, but not least, the developments here are quite general
in nature since the approach presented here can also be used for
quantum-inspired neural networks implemented on conventional computers.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Tensor-network-assisted variational quantum algorithm [3.5995214208007944]
We present a framework for tensor-network-assisted variational quantum algorithms.
We show that our approach consistently outperforms conventional methods using shallow quantum circuits.
arXiv Detail & Related papers (2022-12-20T16:59:54Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Feasible Architecture for Quantum Fully Convolutional Networks [4.849886707973093]
We propose a feasible pure quantum architecture that can be operated on noisy intermediate-scale quantum devices.
Our study represents the successful training of a pure quantum fully convolutional network and discusses advantages by comparing it with the hybrid solution.
arXiv Detail & Related papers (2021-10-05T01:06:54Z) - An unsupervised feature learning for quantum-classical convolutional
network with applications to fault detection [5.609958919699706]
We present a simple unsupervised method for quantum-classical convolutional networks to learn a hierarchy of quantum feature extractors.
The main contribution of the proposed approach is to use the $K$-means clustering to maximize the difference of quantum properties in quantum circuit ansatz.
arXiv Detail & Related papers (2021-07-17T03:16:59Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Solving Quantum Master Equations with Deep Quantum Neural Networks [0.0]
We use deep quantum feedforward neural networks capable of universal quantum computation to represent the mixed states for open quantum many-body systems.
Owning to the special structure of the quantum networks, this approach enjoys a number of notable features, including the absence of barren plateaus.
arXiv Detail & Related papers (2020-08-12T18:00:08Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.