論文の概要: Can Small Language Models Reliably Resist Jailbreak Attacks? A Comprehensive Evaluation
- arxiv url: http://arxiv.org/abs/2503.06519v1
- Date: Sun, 09 Mar 2025 08:47:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:50:16.441607
- Title: Can Small Language Models Reliably Resist Jailbreak Attacks? A Comprehensive Evaluation
- Title(参考訳): 小型言語モデルは確実にジェイルブレイク攻撃に耐えられるか? : 包括的評価
- Authors: Wenhui Zhang, Huiyu Xu, Zhibo Wang, Zeqing He, Ziqi Zhu, Kui Ren,
- Abstract要約: 大型言語モデル(LLM)の代替として、小型言語モデル(SLM)が登場した。
本稿では,SLMの脆弱性をジェイルブレイク攻撃に対して大規模な実証的研究を行った。
モデルのサイズ、モデルアーキテクチャ、トレーニングデータセット、トレーニングテクニックの4つの重要な要素を特定します。
- 参考スコア(独自算出の注目度): 10.987263424166477
- License:
- Abstract: Small language models (SLMs) have emerged as promising alternatives to large language models (LLMs) due to their low computational demands, enhanced privacy guarantees and comparable performance in specific domains through light-weight fine-tuning. Deploying SLMs on edge devices, such as smartphones and smart vehicles, has become a growing trend. However, the security implications of SLMs have received less attention than LLMs, particularly regarding jailbreak attacks, which is recognized as one of the top threats of LLMs by the OWASP. In this paper, we conduct the first large-scale empirical study of SLMs' vulnerabilities to jailbreak attacks. Through systematically evaluation on 63 SLMs from 15 mainstream SLM families against 8 state-of-the-art jailbreak methods, we demonstrate that 47.6% of evaluated SLMs show high susceptibility to jailbreak attacks (ASR > 40%) and 38.1% of them can not even resist direct harmful query (ASR > 50%). We further analyze the reasons behind the vulnerabilities and identify four key factors: model size, model architecture, training datasets and training techniques. Moreover, we assess the effectiveness of three prompt-level defense methods and find that none of them achieve perfect performance, with detection accuracy varying across different SLMs and attack methods. Notably, we point out that the inherent security awareness play a critical role in SLM security, and models with strong security awareness could timely terminate unsafe response with little reminder. Building upon the findings, we highlight the urgent need for security-by-design approaches in SLM development and provide valuable insights for building more trustworthy SLM ecosystem.
- Abstract(参考訳): 小型言語モデル(SLM)は、計算要求の低さ、プライバシー保証の強化、軽量な微調整による特定のドメインでの同等のパフォーマンスのため、大きな言語モデル(LLM)に代わる有望な代替品として登場した。
スマートフォンやスマート車といったエッジデバイスにSLMをデプロイする傾向が強まっている。
しかし, SLM のセキュリティへの影響は LLM よりも少なくなっており,特に OWASP によって LLM の最大の脅威の一つとして認識されているジェイルブレイク攻撃について注目されている。
本稿では,SLMの脆弱性をジェイルブレイク攻撃に対して大規模な実証的研究を行った。
15の主流SLMファミリーの63のSLMを8つの最先端ジェイルブレイク法に対して体系的に評価することで、47.6%のSLMがジェイルブレイク攻撃(ASR > 40%)に対して高い感受性を示し、そのうち38.1%は直接的な有害なクエリ(ASR > 50%)にも耐えられないことを示した。
さらに、脆弱性の背後にある理由を分析し、モデルのサイズ、モデルアーキテクチャ、トレーニングデータセット、トレーニングテクニックの4つの主要な要因を特定します。
さらに,3つのプロンプトレベルの防御手法の有効性を評価し,それぞれが完全な性能を達成できず,異なるSLMとアタック法で検出精度が変化することがわかった。
注目すべきは、SLMセキュリティにおいて固有のセキュリティ意識が重要な役割を担っており、強力なセキュリティ意識を持つモデルは、ほとんどリマインダーを伴わずに、安全でない応答をタイムリーに終了させる可能性があることだ。
本研究は,SLM 開発におけるセキュリティ・バイ・デザイナ・アプローチの緊急ニーズを強調し,より信頼性の高い SLM エコシステム構築のための貴重な洞察を提供する。
関連論文リスト
- Exploring Visual Vulnerabilities via Multi-Loss Adversarial Search for Jailbreaking Vision-Language Models [92.79804303337522]
VLM(Vision-Language Models)は、安全アライメントの問題に対して脆弱である。
本稿では、シナリオ認識画像生成を利用したセマンティックアライメントのための新しいジェイルブレイクフレームワークであるMLAIを紹介する。
大規模な実験はMLAIの重大な影響を示し、MiniGPT-4で77.75%、LLaVA-2で82.80%の攻撃成功率を達成した。
論文 参考訳(メタデータ) (2024-11-27T02:40:29Z) - Diversity Helps Jailbreak Large Language Models [16.34618038553998]
私たちは、大きな言語モデルが以前のコンテキストから逸脱する能力を活用する強力なjailbreakテクニックを発見しました。
LLMに以前の攻撃を逸脱して難読化するように指示するだけで、我々の手法は既存の手法よりも劇的に優れている。
この啓示は、現在のLLM安全性トレーニングにおいて重大な欠陥を露呈しており、既存の手法は脆弱性を取り除くのではなく、単に脆弱性を隠蔽するものであることを示唆している。
論文 参考訳(メタデータ) (2024-11-06T19:39:48Z) - Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
本稿では,対戦型LDMをジェイルブレイク能力に富んだ反復的自己調整プロセスであるADV-LLMを紹介する。
我々のフレームワークは,様々なオープンソース LLM 上で ASR を100% 近く達成しながら,逆接接尾辞を生成する計算コストを大幅に削減する。
Llama3のみに最適化されているにもかかわらず、GPT-3.5では99%のASR、GPT-4では49%のASRを達成している。
論文 参考訳(メタデータ) (2024-10-24T06:36:12Z) - PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Approach [25.31933913962953]
大規模言語モデル(LLM)が広く普及し、セキュリティに対する懸念が高まっている。
そこで我々は,迷路から逃れるネズミのゲームに触発された新しいブラックボックスジェイルブレイク手法PathSeekerを紹介した。
提案手法は,13の商用およびオープンソース LLM を対象としたテストにおいて,最先端の攻撃技術として5つの性能を発揮した。
論文 参考訳(メタデータ) (2024-09-21T15:36:26Z) - Characterizing and Evaluating the Reliability of LLMs against Jailbreak Attacks [23.782566331783134]
我々は3つのカテゴリ、61の特定の有害なカテゴリからの1525の質問、13の人気のあるLCMの10の最先端のジェイルブレイク戦略に焦点を当てた。
攻撃成功率(ASR)、毒性スコア(Toxicity Score)、Fluency(Fluency)、Token Length(Token Length)、文法エラー(Grammatical Errors)などの多次元指標を用いて、ジェイルブレイク下でのLLMのアウトプットを徹底的に評価する。
モデル,攻撃戦略,有害コンテンツの種類,および評価指標間の相関関係について検討し,多面的評価フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-18T01:58:03Z) - LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models [20.154877919740322]
既存のjailbreakメソッドには、複雑なプロンプトエンジニアリングと反復最適化の2つの大きな制限がある。
本稿では,LLMの高度な推論能力を活用し,有害コンテンツを自律的に生成する効率的なジェイルブレイク攻撃手法であるAnalyzing-based Jailbreak(ABJ)を提案する。
論文 参考訳(メタデータ) (2024-07-23T06:14:41Z) - Prompt Leakage effect and defense strategies for multi-turn LLM interactions [95.33778028192593]
システムプロンプトの漏洩は知的財産を侵害し、攻撃者に対する敵の偵察として機能する可能性がある。
我々は, LLM sycophancy 効果を利用して, 平均攻撃成功率 (ASR) を17.7%から86.2%に高めるユニークな脅威モデルを構築した。
7つのブラックボックス防衛戦略の緩和効果と、漏洩防止のためのオープンソースモデルを微調整する。
論文 参考訳(メタデータ) (2024-04-24T23:39:58Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
大規模言語モデル(LLM)は、チャットボットやオートタスク補完エージェントなど、さまざまな領域で広く採用されている。
これらのモデルは、ジェイルブレイク、プロンプトインジェクション、プライバシリーク攻撃などの安全性上の脆弱性の影響を受けやすい。
本研究では,これらの変更がLLMの安全性に与える影響について検討する。
論文 参考訳(メタデータ) (2024-04-05T20:31:45Z) - Eyes Closed, Safety On: Protecting Multimodal LLMs via Image-to-Text Transformation [98.02846901473697]
我々は,MLLMの本来の安全意識を生かしたトレーニング不要な保護手法であるECSO(Eyes Closed, Safety On)を提案する。
ECSOは、安全でない画像をテキストに適応的に変換することで、より安全な応答を生成し、予め整列されたLCMの本質的な安全性メカニズムを活性化する。
論文 参考訳(メタデータ) (2024-03-14T17:03:04Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
我々は,このような脆弱性のリスクを評価するために,BIPIAと呼ばれる間接的インジェクション攻撃のための最初のベンチマークを導入した。
我々の分析では、LLMが情報コンテキストと動作可能な命令を区別できないことと、外部コンテンツ内での命令の実行を回避できないことの2つの主要な要因を同定した。
ブラックボックスとホワイトボックスという2つの新しい防御機構と、これらの脆弱性に対処するための明確なリマインダーを提案する。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
大規模言語モデル(LLM)は、侮辱や差別的なコンテンツを生成し、誤った社会的価値を反映し、悪意のある目的のために使用されることがある。
安全で責任があり倫理的なAIの展開を促進するため、LLMによる100万の強化プロンプトとレスポンスを含むセーフティプロンプトをリリースする。
論文 参考訳(メタデータ) (2023-04-20T16:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。