論文の概要: LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models
- arxiv url: http://arxiv.org/abs/2407.16205v5
- Date: Wed, 05 Mar 2025 14:43:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 17:18:39.777364
- Title: LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models
- Title(参考訳): LLMは危険な共振器になり得る:大規模言語モデルに対する解析ベースのジェイルブレイク攻撃
- Authors: Shi Lin, Hongming Yang, Dingyang Lin, Rongchang Li, Xun Wang, Changting Lin, Wenpeng Xing, Meng Han,
- Abstract要約: 既存のjailbreakメソッドには、複雑なプロンプトエンジニアリングと反復最適化の2つの大きな制限がある。
本稿では,LLMの高度な推論能力を活用し,有害コンテンツを自律的に生成する効率的なジェイルブレイク攻撃手法であるAnalyzing-based Jailbreak(ABJ)を提案する。
- 参考スコア(独自算出の注目度): 20.154877919740322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of Large Language Models (LLMs) has brought significant advancements across various tasks. However, despite these achievements, LLMs still exhibit inherent safety vulnerabilities, especially when confronted with jailbreak attacks. Existing jailbreak methods suffer from two main limitations: reliance on complicated prompt engineering and iterative optimization, which lead to low attack success rate (ASR) and attack efficiency (AE). In this work, we propose an efficient jailbreak attack method, Analyzing-based Jailbreak (ABJ), which leverages the advanced reasoning capability of LLMs to autonomously generate harmful content, revealing their underlying safety vulnerabilities during complex reasoning process. We conduct comprehensive experiments on ABJ across various open-source and closed-source LLMs. In particular, ABJ achieves high ASR (82.1% on GPT-4o-2024-11-20) with exceptional AE among all target LLMs, showcasing its remarkable attack effectiveness, transferability, and efficiency. Our findings underscore the urgent need to prioritize and improve the safety of LLMs to mitigate the risks of misuse.
- Abstract(参考訳): LLM(Large Language Models)の急速な開発は、様々なタスクにおいて大きな進歩をもたらした。
しかしながら、これらの成果にもかかわらず、LLMは、特にジェイルブレイク攻撃に直面した場合に、固有の安全性上の脆弱性をまだ示している。
既存のjailbreakメソッドには、複雑なプロンプトエンジニアリングと反復最適化の2つの大きな制限があるため、攻撃成功率(ASR)が低く、攻撃効率(AE)が低い。
本研究では,LLMの高度な推論能力を活用して有害なコンテンツを自律的に生成し,複雑な推論過程においてその基盤となる安全性の脆弱性を明らかにする,効率的なジェイルブレイク攻撃手法であるAnalyzing-based Jailbreak(ABJ)を提案する。
我々は、様々なオープンソースおよびクローズドソース LLM に対して、ABJ に関する包括的な実験を行う。
特に、ABJは、攻撃効率、転送性、効率を顕著に示し、全ての目標LLMのうち、例外的なAEを持つ高いASR(GPT-4o-2024-11-20では82.1%)を達成する。
本研究は, 誤用リスクを軽減するため, LLMの安全性を優先し, 改善する緊急の必要性を浮き彫りにした。
関連論文リスト
- Can Small Language Models Reliably Resist Jailbreak Attacks? A Comprehensive Evaluation [10.987263424166477]
大型言語モデル(LLM)の代替として、小型言語モデル(SLM)が登場した。
本稿では,SLMの脆弱性をジェイルブレイク攻撃に対して大規模な実証的研究を行った。
モデルのサイズ、モデルアーキテクチャ、トレーニングデータセット、トレーニングテクニックの4つの重要な要素を特定します。
論文 参考訳(メタデータ) (2025-03-09T08:47:16Z) - You Can't Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense [34.023473699165315]
脱獄防御戦略によるLCMの実用性低下, 安全性向上, 過大に安全なエスカレーションについて検討した。
主流のジェイルブレイク防御は、安全性とパフォーマンスの両方を同時に確保できないことに気付きました。
論文 参考訳(メタデータ) (2025-01-21T15:24:29Z) - LLM-Virus: Evolutionary Jailbreak Attack on Large Language Models [59.29840790102413]
既存のジェイルブレイク攻撃は主に不透明な最適化手法と勾配探索法に基づいている。
進化的ジェイルブレイクと呼ばれる進化的アルゴリズムに基づくジェイルブレイク攻撃手法であるLSM-Virusを提案する。
この結果から, LLM-Virus は既存の攻撃手法と比較して, 競争力や性能に優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-12-28T07:48:57Z) - Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
大規模言語モデル(LLM)は、出現するジェイルブレイク攻撃に対してますます脆弱である。
この脆弱性は現実世界のアプリケーションに重大なリスクをもたらす。
本稿では,ガイドラインLLMという新しい防御パラダイムを提案する。
論文 参考訳(メタデータ) (2024-12-10T12:42:33Z) - SQL Injection Jailbreak: a structural disaster of large language models [71.55108680517422]
LLMによる入力プロンプトの構築を利用して、ユーザプロンプトにジェイルブレイク情報を注入する新しいジェイルブレイク手法を提案する。
提案手法は,AdvBench の文脈でよく知られた5つのオープンソース LLM に対する攻撃成功率を約100% 達成する。
論文 参考訳(メタデータ) (2024-11-03T13:36:34Z) - Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
本稿では,対戦型LDMをジェイルブレイク能力に富んだ反復的自己調整プロセスであるADV-LLMを紹介する。
我々のフレームワークは,様々なオープンソース LLM 上で ASR を100% 近く達成しながら,逆接接尾辞を生成する計算コストを大幅に削減する。
Llama3のみに最適化されているにもかかわらず、GPT-3.5では99%のASR、GPT-4では49%のASRを達成している。
論文 参考訳(メタデータ) (2024-10-24T06:36:12Z) - Jailbreak Antidote: Runtime Safety-Utility Balance via Sparse Representation Adjustment in Large Language Models [8.024771725860127]
ジェイルブレイク攻撃は、大きな言語モデルを操作して有害なコンテンツを生成する。
Jailbreak Antidoteは、モデルの内部状態のスパースサブセットを操作することで、安全優先のリアルタイム調整を可能にする。
解析の結果,LLMの安全性関連情報はわずかに分散していることがわかった。
論文 参考訳(メタデータ) (2024-10-03T08:34:17Z) - PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Approach [25.31933913962953]
大規模言語モデル(LLM)が広く普及し、セキュリティに対する懸念が高まっている。
そこで我々は,迷路から逃れるネズミのゲームに触発された新しいブラックボックスジェイルブレイク手法PathSeekerを紹介した。
提案手法は,13の商用およびオープンソース LLM を対象としたテストにおいて,最先端の攻撃技術として5つの性能を発揮した。
論文 参考訳(メタデータ) (2024-09-21T15:36:26Z) - The Dark Side of Function Calling: Pathways to Jailbreaking Large Language Models [8.423787598133972]
本稿では,大規模言語モデル(LLM)の関数呼び出しプロセスにおける重大な脆弱性を明らかにする。
本稿では,アライメントの相違,ユーザ強制,厳密な安全フィルタの欠如を生かした,新しい"jailbreak function"攻撃手法を提案する。
本研究は,LLMの機能呼び出し機能において,緊急のセキュリティ対策の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-07-25T10:09:21Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
本稿では、以前LLMセキュリティで見過ごされていた特別なトークンを活用して、ジェイルブレイク攻撃を改善する仮想コンテキストを提案する。
総合的な評価によると、仮想コンテキストによるジェイルブレイク攻撃は、4つの広く使われているジェイルブレイク手法の成功率を約40%向上させることができる。
論文 参考訳(メタデータ) (2024-06-28T11:35:54Z) - Bag of Tricks: Benchmarking of Jailbreak Attacks on LLMs [13.317364896194903]
大規模言語モデル(LLM)は、ゼロショット方式で複雑なタスクを実行する上で重要な機能を示している。
LLMはジェイルブレイク攻撃の影響を受けやすく、有害な出力を生成するために操作することができる。
論文 参考訳(メタデータ) (2024-06-13T17:01:40Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
大規模言語モデル(LLM)は、チャットボットやオートタスク補完エージェントなど、さまざまな領域で広く採用されている。
これらのモデルは、ジェイルブレイク、プロンプトインジェクション、プライバシリーク攻撃などの安全性上の脆弱性の影響を受けやすい。
本研究では,これらの変更がLLMの安全性に与える影響について検討する。
論文 参考訳(メタデータ) (2024-04-05T20:31:45Z) - Distract Large Language Models for Automatic Jailbreak Attack [8.364590541640482]
大規模言語モデルの自動レッドチーム化のための新しいブラックボックスジェイルブレイクフレームワークを提案する。
我々は、Jailbreak LLMに対する反復最適化アルゴリズムを用いて、悪意のあるコンテンツの隠蔽とメモリリフレーミングを設計した。
論文 参考訳(メタデータ) (2024-03-13T11:16:43Z) - Comprehensive Assessment of Jailbreak Attacks Against LLMs [28.58973312098698]
4つのカテゴリから13の最先端ジェイルブレイク法,16の違反カテゴリから160の質問,6つの人気のあるLDMについて検討した。
実験の結果, 最適化されたジェイルブレイクは高い攻撃成功率を確実に達成することが示された。
攻撃性能と効率のトレードオフについて論じるとともに、脱獄プロンプトの転送性は依然として維持可能であることを示す。
論文 参考訳(メタデータ) (2024-02-08T13:42:50Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
我々は,このような脆弱性のリスクを評価するために,BIPIAと呼ばれる間接的インジェクション攻撃のための最初のベンチマークを導入した。
我々の分析では、LLMが情報コンテキストと動作可能な命令を区別できないことと、外部コンテンツ内での命令の実行を回避できないことの2つの主要な要因を同定した。
ブラックボックスとホワイトボックスという2つの新しい防御機構と、これらの脆弱性に対処するための明確なリマインダーを提案する。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z) - Defending Large Language Models Against Jailbreaking Attacks Through Goal Prioritization [98.18718484152595]
本研究は,学習段階と推論段階の両方において,目標の優先順位付けを統合することで,支援と安全性の確保という目標との本質的な対立に対処することを提案する。
我々の研究は、脱獄攻撃と防衛の理解に寄与し、LLMの能力と安全性の関係に光を当てている。
論文 参考訳(メタデータ) (2023-11-15T16:42:29Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
大規模言語モデル(LLM)は、敵のジェイルブレイクに対して脆弱である。
LLMへのブラックボックスアクセスのみのセマンティックジェイルブレイクを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T15:38:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。