Human Cognition Inspired RAG with Knowledge Graph for Complex Problem Solving
- URL: http://arxiv.org/abs/2503.06567v1
- Date: Sun, 09 Mar 2025 11:50:39 GMT
- Title: Human Cognition Inspired RAG with Knowledge Graph for Complex Problem Solving
- Authors: Yao Cheng, Yibo Zhao, Jiapeng Zhu, Yao Liu, Xing Sun, Xiang Li,
- Abstract summary: Large language models (LLMs) have demonstrated transformative potential across various domains.<n>Retrieval-Augmented Generation (RAG) has emerged as a promising solution to enhance LLMs accuracy.<n>We propose CogGRAG, a cognition inspired graph-based RAG framework.
- Score: 32.293348354802504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated transformative potential across various domains, yet they face significant challenges in knowledge integration and complex problem reasoning, often leading to hallucinations and unreliable outputs. Retrieval-Augmented Generation (RAG) has emerged as a promising solution to enhance LLMs accuracy by incorporating external knowledge. However, traditional RAG systems struggle with processing complex relational information and multi-step reasoning, limiting their effectiveness in advanced problem-solving tasks. To address these limitations, we propose CogGRAG, a cognition inspired graph-based RAG framework, designed to improve LLMs performance in Knowledge Graph Question Answering (KGQA). Inspired by the human cognitive process of decomposing complex problems and performing self-verification, our framework introduces a three-stage methodology: decomposition, retrieval, and reasoning with self-verification. By integrating these components, CogGRAG enhances the accuracy of LLMs in complex problem solving. We conduct systematic experiments with three LLM backbones on four benchmark datasets, where CogGRAG outperforms the baselines.
Related papers
- CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models [14.784841713647682]
CoT-RAG is a novel reasoning framework with three key designs.
It features Knowledge Graph-driven CoT Generation, Learnable Knowledge Case-aware RAG, and Pseudo-Program Prompting Execution.
Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%.
arXiv Detail & Related papers (2025-04-18T07:55:09Z) - RAG-KG-IL: A Multi-Agent Hybrid Framework for Reducing Hallucinations and Enhancing LLM Reasoning through RAG and Incremental Knowledge Graph Learning Integration [4.604003661048267]
RAG-KG-IL is a novel multi-agent hybrid framework designed to enhance the reasoning capabilities of Large Language Models.
It integrates Retrieval-Augmented Generation (RAG) and Knowledge Graphs (KGs) with an Incremental Learning (IL) approach.
We evaluate the framework using real-world case studies involving health-related queries.
arXiv Detail & Related papers (2025-03-14T11:50:16Z) - Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning [55.6623318085391]
Recent large language model (LLM) reasoning suffers from limited domain knowledge, susceptibility to hallucinations, and constrained reasoning depth.
This paper presents the first investigation into integrating step-wise knowledge graph retrieval with step-wise reasoning.
We propose KG-RAR, a framework centered on process-oriented knowledge graph construction, a hierarchical retrieval strategy, and a universal post-retrieval processing and reward model.
arXiv Detail & Related papers (2025-03-03T15:20:41Z) - ZebraLogic: On the Scaling Limits of LLMs for Logical Reasoning [92.76959707441954]
We introduce ZebraLogic, a comprehensive evaluation framework for assessing LLM reasoning performance.
ZebraLogic enables the generation of puzzles with controllable and quantifiable complexity.
Our results reveal a significant decline in accuracy as problem complexity grows.
arXiv Detail & Related papers (2025-02-03T06:44:49Z) - Bridging Visualization and Optimization: Multimodal Large Language Models on Graph-Structured Combinatorial Optimization [56.17811386955609]
Graph-structured challenges are inherently difficult due to their nonlinear and intricate nature.<n>In this study, we propose transforming graphs into images to preserve their higher-order structural features accurately.<n>By combining the innovative paradigm powered by multimodal large language models with simple search techniques, we aim to develop a novel and effective framework.
arXiv Detail & Related papers (2025-01-21T08:28:10Z) - A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models [15.190033208947051]
Retrieval-augmented generation (RAG) has emerged as a promising solution to customize large language models (LLMs)
This survey presents a systematic analysis of Graph-based Retrieval-Augmented Generation (GraphRAG)
arXiv Detail & Related papers (2025-01-21T06:25:21Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.<n>We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.<n>Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.<n>GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Multi-step Inference over Unstructured Data [2.169874047093392]
High-stakes decision-making tasks in fields such as medical, legal and finance require a level of precision, comprehensiveness, and logical consistency.
We have developed a neuro-symbolic AI platform to tackle these problems.
The platform integrates fine-tuned LLMs for knowledge extraction and alignment with a robust symbolic reasoning engine.
arXiv Detail & Related papers (2024-06-26T00:00:45Z) - An Enhanced Prompt-Based LLM Reasoning Scheme via Knowledge Graph-Integrated Collaboration [7.3636034708923255]
This study proposes a collaborative training-free reasoning scheme involving tight cooperation between Knowledge Graph (KG) and Large Language Models (LLMs)
Through such a cooperative approach, our scheme achieves more reliable knowledge-based reasoning and facilitates the tracing of the reasoning results.
arXiv Detail & Related papers (2024-02-07T15:56:17Z) - Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph [29.447300472617826]
Think-on-Graph (ToG) is a new approach for external knowledge graphs (KG) in large language models (LLMs)
ToG iteratively executes beam search on KG, discovers the most promising reasoning paths, and returns the most likely reasoning results.
ToG achieves overall SOTA in 6 out of 9 datasets where most previous SOTAs rely on additional training.
arXiv Detail & Related papers (2023-07-15T03:31:38Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
This paper proposes a novel framework named textbfSearch-in-the-Chain (SearChain) for the interaction between Information Retrieval (IR) and Large Language Model (LLM)
Experiments show that SearChain outperforms state-of-the-art baselines on complex knowledge-intensive tasks.
arXiv Detail & Related papers (2023-04-28T10:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.